首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
地球物理   6篇
地质学   4篇
海洋学   2篇
自然地理   16篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   5篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1993年   1篇
排序方式: 共有28条查询结果,搜索用时 312 毫秒
1.
It is very important for converting the seismic data from the time domain to the depth domain. Here we discuss the approaches of inverse modeling of travel times for determination of the P-wave velocity (Vp). The migration section of the single channel seismic data is used to define the model horizons and help to control their geometry. Wide angle hydrophone data of OBS are used to determine P-wave travel times. The picked travel times from various shots are inverted for P-wave interval velocities using RayInvr, which calculated theoretical travel times via ray tracing. Damped least squares optimization is performed to fine tune the fits between observed and calculated travel times. In the end, the Vp curve is achieved and the results are compared with that derived from the conventional hyperbolic curve velocity analysis method, the shape of the two curves are similar, and the velocity increases in the layer where gas hydrates are present.  相似文献   
2.
3.
We have developed a generic dynamic model of extension of the lithosphere, which predicts major element composition and volume of melt generated from initial extension to steady state seafloor spreading. Stokes equations for non-Newtonian flow are solved and the mantle melts by decompression. Strengthening of the mantle due to dehydration as melting progresses is included. The composition is then empirically related to depletion. Using a crystallisation algorithm, the predicted primary melt composition was compared with mean North Atlantic mid-ocean ridge basalt (MORB). At steady state, using half spreading rates from 10 to 20 mm yr− 1 and mantle potential temperatures of 1300 to 1325 °C we predict a major element composition that is within the variation in the mean of North Atlantic MORB.

This model is applied to the Southeast Greenland margin, which has extensive coverage of seismic and ODP core data. These data have been interpreted to indicate an initial pulse of magmatism on rifting that rapidly decayed to leave oceanic crustal thickness of 8 to 11 km. This pattern of melt production can be recreated by introducing an initial hot layer of asthenosphere beneath the continental lithosphere and by having a period of fast spreading during early opening. The hot layer was convected through the melt region giving a pulse of high magnesian and low silica melt during the early rifting process. The predicted major element composition of primary melts generated are in close agreement with primary melts from the Southeast Greenland margin. The observed variations in major element composition are reproduced without a mantle source composition anomaly.  相似文献   

4.
Parke  Minshull  erson  White  McKenzie  Ku&#;çu  Bull  Görür  & &#;engör 《地学学报》1999,11(5):223-227
Turkey is moving westward relative to Eurasia, thereby accommodating the collision between Arabia and Eurasia. This motion is mostly taken up by strike-slip deformation along the North and East Anatolian Faults. The Sea of Marmara lies over the direct westward continuation of the North Anatolian Fault zone. Just east of the Sea of Marmara, the North Anatolian Fault splits into three strands, two of which continue into the sea. While the locations of the faults are well constrained on land, it has not yet been determined how the deformation is transferred across the Sea of Marmara, onto the faults on the west coast of Turkey. We present results from a seismic reflection survey undertaken to map the faults as they continue through the three deep Marmara Sea basins of Çlnarclk, Central Marmara and Tekirdag, in order to determine how the deformation is distributed across the Sea of Marmara, and how it is taken up on the western side of the sea. The data show active dipping faults with associated tilting of sedimentary layers, connecting the North Anatolian Fault to strike-slip faults that cut the Biga and Gallipoli Peninsulas.  相似文献   
5.
Seismic reflection profiles from Mesozoic oceanic crust around the Blake Spur Fracture Zone (BSFZ) in the western North Atlantic have been widely used in constraining tectonic models of slow-spreading mid-ocean ridges. These profiles have anomalously low basement relief compared to crust formed more recently at the Mid-Atlantic Ridge at the same spreading rate. Profiles from other regions of Mesozoic oceanic crust also have greater relief. The anomalous basement relief and slightly increased crustal thickness in the BSFZ survey area may be due to the presence of a mantle thermal anomaly close to the ridge axis at the time of crustal formation. If so, the intracrustal structures observed may be representative of an atypical tectonic regime.  相似文献   
6.
Ice streams are the fast-flowing zones of ice sheets that can discharge a large flux of ice. The glaciated western Svalbard margin consists of several cross-shelf troughs which are the former ice stream drainage pathways during the Pliocene–Pleistocene glaciations. From an integrated analysis of high-resolution multibeam swath-bathymetric data and several high-resolution two-dimensional reflection seismic profiles across the western and northwestern Svalbard margin we infer the ice stream flow directions and the deposition centres of glacial debris that the ice streams deposited on the outer margin. Our results show that the northwestern margin of Svalbard experienced a switching of a major ice stream. Based on correlation with the regional seismic stratigraphy as well as the results from ODP 911 on Yermak Plateau and ODP 986 farther south on the western margin of Spitsbergen, off Van Mijenfjord, we find that first a northwestward flowing ice stream developed during initial northern hemispheric cooling (starting ~2.8–2.6 Ma). A switch in ice stream flow direction to the present-day Kongsfjorden cross-shelf trough took place during a glaciation at ~1.5 Ma or probably later during an intensive major glaciation phase known as the ‘Mid-Pleistocene Revolution’ starting at ~1.0 Ma. The seismic and bathymetric data suggest that the switch was abrupt rather than gradual and we attribute it to the reaching of a tipping point when growth of the Svalbard ice sheet had reached a critical thickness and the ice sheet could overcome a topographic barrier.  相似文献   
7.
8.
The Makran accretionary wedge is one of the largest on Earth. A 7-km-thick column of sands and quartzolithic turbidites are incorporated into this wedge in a series of deformed thrust sheets. We present the results of prestack depth migration and focusing-error analysis (migration velocity analysis) performed on a profile across the Makran wedge. The depth section shows the deformation style of the accreted sediments, and the migration velocities allow us to estimate porosity variations in the sediments. The thrust sheets show evidence of fault-propagation folding, with a long wavelength of deformation (≈ 12 km) and secondary thrusting in the kink bands of the folds, such that the central part of each thrust sheet is elevated to form an additional ridge. This deformation style and the 15° steep surface slope of the first ridge suggest a high degree of consolidation. Porosities were calculated from the seismic migration velocities and the ratio of fluid pressure to lithostatic pressure λ was estimated for 5 locations along the profile. Rather than being undercompacted and overpressured as in most accretionary wedges, the sedimentary input is normally compacted (exponential porosity decay) throughout almost the whole wedge. However, a slight increase in porosity and λ at depth, with respect to the normal compaction curve indicates, that the turbiditic sequence might be overpressured landward of the deformation front.  相似文献   
9.
Improvements in the joint inversion of seismic and marine controlled source electromagnetic data sets will require better constrained models of the joint elastic‐electrical properties of reservoir rocks. Various effective medium models were compared to a novel laboratory data set of elastic velocity and electrical resistivity (obtained on 67 reservoir sandstone samples saturated with 35 g/l brine at a differential pressure of 8 MPa) with mixed results. Hence, we developed a new three‐phase effective medium model for sandstones with pore‐filling clay minerals based on the combined self‐consistent approximation and differential effective medium model. We found that using a critical porosity of 0.5 and an aspect ratio of 1 for all three components, the proposed model gave accurate model predictions of the observed magnitudes of P‐wave velocity and electrical resistivity and of the divergent trends of clean and clay‐rich sandstones at higher porosities. Using only a few well‐constrained input parameters, the new model offers a practical way to predict in situ porosity and clay content in brine saturated sandstones from co‐located P‐wave velocity and electrical resistivity data sets.  相似文献   
10.
Modern disposable sonobuoys can provide a simple and cost-effective alternative to ocean bottom seismometers for marine refraction experiments over oceanic crust. Unfortunately, the fact that they are free to drift with the prevailing ocean currents can introduce significant travel-time errors into the modelling process if the seafloor topography is large. For sonobuoys recorded during and after turns the drift rate and direction can be uniquely determined by inversion of the shot-receiver ranges derived from the water-wave arrival. The same method can be used to determine a best fitting average drift vector for the whole dataset. A modification to conventional two-dimensional travel-time modelling techniques has been developed to account for this drift. Each sonobuoy profile is divided into several subsets, typically of 100 shots each, and each subset is then modelled as a separate common receiver gather, significantly reducing the errors in the calculated travel-times. For re alistic bathymetry, the magnitude of these travel-time errors is up to 200 ms, significantly larger than the estimated picking uncertainty. Real data from a typical sonobuoy refraction experiment on the Mid-Atlantic Ridge were modelled with and without the drift correction applied. Much of the lateral variation in the velocity structure was removed when the drift correction was applied, indicating that this structure was due to variations in the travel-times caused by sonobuoy drift.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号