首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
测绘学   1篇
地球物理   1篇
地质学   2篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
排序方式: 共有4条查询结果,搜索用时 120 毫秒
1
1.
Currently, methods of extracting spatial information from satellite images are mainly based on visual interpretations and drawing the consequences by human factor, which is both costly and time consuming. A large volume of data collected by satellite sensors, and significant improvement in spatial and spectral resolution of these images require the development of new methods for optimal use of these data in order to produce rapid economic and updating road maps. In this study, a new automatic method is proposed for road extraction by integrating the SVM and Level Set methods. The estimated probability of classification by SVM is used as input in Level Set Method. The average of completeness, correctness, and quality was 84.19, 88.69 and 76.06% respectively indicate high performance of proposed method for road extraction from Google Earth images.  相似文献   
2.
Recently, groundwater vulnerability assessment of coastal aquifers using the GALDIT framework has been widely used to investigate the process of groundwater contamination. This study proposes multi-attribute decision-making (MADM) entropy and Wilcoxon non-parametric statistical test methods to improve the vulnerability index of coastal aquifers. The rates and weights of this framework were modified using Wilcoxon non-parametric and entropy methods, respectively, and a combined framework of GALDIT-entropy, Wilcoxon-GALDIT, and Wilcoxon-entropy was obtained. Pearson correlation coefficients between the mentioned vulnerability indices and total-dissolved solids (TDS) of 0.51, 0.66 and 0.75, respectively, were obtained. According to the results, the Wilcoxon-entropy index had the highest correlation with TDS. Generally, it can be concluded that the proposed frameworks provide a more accurate estimation of vulnerability distribution in coastal aquifers.  相似文献   
3.
4.
Bordbar  Mojgan  Neshat  Aminreza  Javadi  Saman  Pradhan  Biswajeet  Dixon  Barnali  Paryani  Sina 《Natural Hazards》2022,110(3):1799-1820

The main objective of this study is to integrate adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM) and artificial neural network (ANN) to design an integrated supervised committee machine artificial intelligence (SCMAI) model to spatially predict the groundwater vulnerability to seawater intrusion in Gharesoo-Gorgan Rood coastal aquifer placed in the northern part of Iran. Six hydrological GALDIT parameters (i.e., G groundwater occurrence, A aquifer hydraulic conductivity, L level of groundwater above sea level, D distance from the shore, I impact of the existing status of seawater intrusion in the region, and T thickness of the aquifer) were considered as inputs for each model. In the training step, the values of GALDIT’s vulnerability index were conditioned by using the values of TDS concentration in order to obtain the conditioned vulnerability index (CVI). The CVI was considered as the target for each model. After training the models, each model was tested using a separate TDS dataset. The results indicated that the ANN and ANFIS algorithms performed better than the SVM algorithm. The values of correlation were obtained as 88, 87, and 80% for ANN, ANFIS, and SVM models, respectively. In the testing step of the SCMAI model, the values of RMSE, R2, and r were obtained as 6.4, 0.95, and 97%, respectively. Overall, SCMAI model outperformed other models to spatially predicting vulnerable zones. The result of the SCMAI model confirmed that the western zones along the shoreline had the highest vulnerability to seawater intrusion; therefore, it seems critical to consider emergency protection plans for study area.

Graphic abstract
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号