首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   3篇
测绘学   1篇
大气科学   1篇
地球物理   21篇
地质学   36篇
天文学   2篇
综合类   1篇
自然地理   4篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   7篇
  2018年   9篇
  2017年   8篇
  2016年   11篇
  2015年   2篇
  2014年   5篇
  2013年   8篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
排序方式: 共有66条查询结果,搜索用时 17 毫秒
1.
Hydrogeologically, faults may impede, conduit, exert no influence, or may play a combination of these roles on groundwater flow. The object of this paper is to study the hydrogeological role of the Tabarteh fault, which is located on the border of Zagros and Central Iran tectonic zones in an alluvial aquifer. The recorded data of water table levels, chemical parameters, and discharge rate of wells, in addition to geological maps and geophysical results, were collected and evaluated. The outcrop of travertine in limited areas and the emergence of a few small springs within the alluvium show a barrier role of the fault in the groundwater flow. The spatial analysis of chemical components, head time series, and groundwater flow direction assessment demonstrated that the fault acts as both a barrier and a non-barrier in different sections. The multivariate statistical methods of cluster and discriminant analyses also confirm the dual role of the fault.  相似文献   
2.
Propagation of seismic waves through soil layers would drastically change the frequency content and amplitude-based features of ground motions at the surface. These alterations are known as seismic site effects. Computation of site effects of high-populated areas such as large cities is of great importance (e.g., it is used in development of seismic microzonation of a region). Shiraz is one of the most populous cities of Iran and is located in a high seismic hazardous region. A representative clay site in this city is selected to assess local site effects. The time series and random vibration theory procedure in the frequency domain are implemented to analyze the aforementioned site. Furthermore, the nonlinear dynamic soil behavior is simulated by the equivalent linear method and the nonlinear method via DEEPSOIL program. Three types of soil column uncertainties such as shear wave velocity, modulus reduction, and damping ratio of soil layers as well as depth of underlying rock half-space (D bed) are considered herein. The mean amplification and standard deviation of natural logarithm of amplification factors are computed for a variety of analysis types. The results of the current study show that the computed mean and standard deviation of amplification factor in ln units by considering only V S uncertainty are in good agreement with the corresponding ones by considering V S and modulus reduction and damping ratio variabilities simultaneously for the studied site. Furthermore, it seems that the effect of bedrock depth in definition of spectral shapes of the Iranian seismic building code should be taken into account.  相似文献   
3.
Journal of Seismology - Pulse-like ground motions may have only a distinct strong pulse or multiple pulses within the velocity time-history. These intrinsic pulses are hidden in low-frequency...  相似文献   
4.
This paper presents a constitutive model for describing the stress-strain response of sands under cyclic loading. The model, formulated using the critical state theory within the bounding surface plasticity framework, is an upgraded version of an existing model developed for monotonic behaviour of cohesionless sands. With modification of the hardening law, plastic volumetric strain increment and unloading plastic modulus, the original model was modified to simulate cyclic loading. The proposed model was validated against triaxial cyclic loading tests for Fuji River sand, Toyoura sand and Nigata sand. Comparison between the measured and predicted results suggests that the proposed modified model can capture the main features of cohesionless sands under drained and undrained cyclic loading.  相似文献   
5.
History matching is still one of the main challenging parts of reservoir study especially in giant brown oil fields with lots of wells. In these cases, history matching with conventional manual technique needs many runs and takes months to get a match. In this work, an innovative approach was suggested for fast history matching in a real brown field. The workflow was employed based on an optimized proxy model for history matching of a field consisting of 14 active wells with multiple responses (which are production rate and pressure data) in the south part of Iran. The main important features of the proposed algorithm were defining a proxy model which is response surface method in which 21 model parameters were incorporated based on cubic centered face method. The proxy model was then optimized by one of the most famous algorithms which is genetic algorithm. Proxy model was successfully performed using 256 samples leading into p- value of 0.531 and R 2 of 0.91 dataset. As a result, the proposed workflow and algorithm showed good and acceptable results for history matching of studied real model.  相似文献   
6.
Measurement of compressional, shear, and Stoneley wave velocities, carried out by dipole sonic imager (DSI) logs, provides invaluable data in geophysical interpretation, geomechanical studies and hydrocarbon reservoir characterization. The presented study proposes an improved methodology for making a quantitative formulation between conventional well logs and sonic wave velocities. First, sonic wave velocities were predicted from conventional well logs using artificial neural network, fuzzy logic, and neuro-fuzzy algorithms. Subsequently, a committee machine with intelligent systems was constructed by virtue of hybrid genetic algorithm-pattern search technique while outputs of artificial neural network, fuzzy logic and neuro-fuzzy models were used as inputs of the committee machine. It is capable of improving the accuracy of final prediction through integrating the outputs of aforementioned intelligent systems. The hybrid genetic algorithm-pattern search tool, embodied in the structure of committee machine, assigns a weight factor to each individual intelligent system, indicating its involvement in overall prediction of DSI parameters. This methodology was implemented in Asmari formation, which is the major carbonate reservoir rock of Iranian oil field. A group of 1,640 data points was used to construct the intelligent model, and a group of 800 data points was employed to assess the reliability of the proposed model. The results showed that the committee machine with intelligent systems performed more effectively compared with individual intelligent systems performing alone.  相似文献   
7.
In the present study, some biological traits of Caridina fossarum reproduction are studied in the Ghomp-Atashkedeh spring (Fasa, Shiraz, Iran), for the first time. This Iranian endemic freshwater species was studied from April 2007 to March 2008. Minimum sexable size (MSS) and absolute or relative size at the onset of maturity (SOM and RSOM) in terms of carapace length (CL) was found to be 2.4 mm, 4.3 mm and 55%, respectively. Sex ratio showed variations on a monthly basis. Sex reversal is a possible scenario for C. fossarum because the size-specific sex ratio revealed a reverse pattern. Based on the proportions of ovigerous females, the main breeding season was determined to be from April to August, demonstrating a peak during early spring. There is a period of extended recruitment at water temperatures above 20 °C. The size at which 50% of females are mature was estimated at CL = 5.03 mm from the proportion of ovigerous females during the breeding season. The pleopodal egg number varied from 3 to 75 eggs per female with a mean value 34.39 ± 14.27. The results showed that although there is a significant relationship between carapace length CL and pleopodal egg number, it is not the most important factor affecting potential fecundity in C. fossarum due to the low values of slope (= 1.51) and determination coefficient (= 0.052).  相似文献   
8.
In this paper, a fully coupled numerical model is presented for the finite element analysis of the deforming porous medium interacting with the flow of two immiscible compressible wetting and non-wetting pore fluids. The governing equations involving coupled fluid flow and deformation processes in unsaturated soils are derived within the framework of the generalized Biot theory. The displacements of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the present formulation. The other variables are incorporated into the model using the experimentally determined functions that define the relationship between the hydraulic properties of the porous medium, i.e. saturation, relative permeability and capillary pressure. It is worth mentioning that the imposition of various boundary conditions is feasible notwithstanding the choice of the primary variables. The modified Pastor–Zienkiewicz generalized constitutive model is introduced into the mathematical formulation to simulate the mechanical behavior of the unsaturated soil. The accuracy of the proposed mathematical model for analyzing coupled fluid flows in porous media is verified by the resolution of several numerical examples for which previous solutions are known. Finally, the performance of the computational algorithm in modeling of large-scale porous media problems including the large elasto-plastic deformations is demonstrated through the fully coupled analysis of the failure of two earth and rockfill dams. Furthermore, the three-phase model is compared to its simplified one which simulates the unsaturated porous medium as a two-phase one with static air phase. The paper illustrates the shortcomings of the commonly used simplified approach in the context of seismic analysis of two earth and rockfill dams. It is shown that accounting the pore air as an independent phase significantly influences the unsaturated soil behavior.  相似文献   
9.
The absence of environmentally sensitive soil management systems can be considered as one of the major risks to sustainability of agricultural soils in Iran. Tillage is the most critical operation in soil management designed to achieve high crop yield, but it can adversely affect the soil fauna in several ways. In the present study, assessment of soil fauna was carried out in Western Iran in 2008 and 2009 in soil subjected to conventional (CT), minimum (MT) and no (NT)-tillage systems and amended with three levels of cattle manure (CM). Earthworm, mite, springtail and nematode populations were measured as indicators of macro, meso and micro fauna groups, respectively. Soil moisture and bulk density were also determined. Generally, low populations of soil fauna were observed consistent with expectations under similar conditions for this region. Earthworm populations were low and had a patchy distribution. Tillage and CM were found to have no effects on soil mites in both years. Soil springtails were reduced by soil tillage, indicating their sensivity to soil disturbance induced by tillage. In 2008, the nematode population was greater with application of 40 ton ha?1 CM applications (113 N.100 g soil?1). Soil tillage-induced disturbance reduced nematode population in 2009 (214 N.100 g soil?1 at CT). Minimum seedbed preparation besides less soil disturbance makes MT a proper tillage system for Zea mays cultivation. Cattle manure application increased Z. mays’ biomass, but according to our results its annual application is not recommended. There were no changes in BD in both years. We conclude that in short-term studies, soil nematode populations are suitable biological indices (under similar soil and climatic conditions) for the ecological comparison of agricultural management systems in Iran.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号