首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
大气科学   1篇
地质学   4篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
This study attempts to analyse paleoceanographic changes in the Central Indian Ocean (Deep Sea Drilling Project Site 237), linked to monsoon variability as well as deep-sea circulation during the Plio-Pleistocene. We used factor and cluster analyses of census data of the 34 most dominant species of benthic foraminifera that enabled us to identify five biofacies: Astrononion umbilicatulumUvigerina proboscidea (Au–Up), Pullenia bulloidesBulimina striata (Pb–Bs), Globocassidulina tumidaNuttallides umbonifera (Gt–Nu), Gyroidinoides nitidulaCibicides wuellerstorfi (Gn–Cw) and Cassidulina carinataCassidulina laevigata (Cc–Cl) biofacies. Knowledge of the environmental preferences of modern deep-sea benthic foraminifera helped to interpret the results of factor and cluster analyses in combination with oxygen and carbon isotope values. The biofacies indicative of high surface productivity, resulting from a stronger South Equatorial Current (Au–Up and Pb–Bs biofacies), dominate the early Pliocene interval (5.6–4.5 Ma) of global warmth. An intense Indo-Pacific ‘biogenic bloom’ and strong Oxygen Minimum Zone extended to intermediate depths (1000–2000 m) over large parts of the Indian Ocean in the early Pliocene. Since 4.5 Ma, the food supply in the Central Indian Ocean dropped and fluctuated while deep waters were corrosive (biofacies Gt–Nu, Gn–Cw). The Pleistocene interval is characterized by an intermediate flux of organic matter (Cc–Cl biofacies).  相似文献   
2.
3.
4.
We investigated the modern distribution of fossil midges within a dimictic lake and explored downcore patterns of inferred lake depths over the last 2000 years from previously published proxies. Modern midge distribution within Gall Lake showed a consistent and predictable pattern related to the lake-depth gradient with recognizable assemblages characteristic of shallow-water, mid-depth and profundal environments. Interpretations of downcore changes in midge assemblages, in conjunction with quantitative lake-depth inferences across a priori defined (based on diatom data) ~ 500-yr wet and dry periods, demonstrated that both invertebrate and algal assemblages exhibited similar timing and nature of ecological responses. Midges were quantified by their relative abundance, concentrations and an index of Chaoborus to chironomids, and all showed the greatest differences between the wet and dry periods. During the low lake-level period of the Medieval Climate Anomaly (MCA: AD 900 to 1400), profundal chironomids declined, shallow-water and mid-depth chironomids increased, chironomid-inferred lake level declined and the Chaoborus-to-chironomid index decreased. The coherence between multiple trophic levels provides strong evidence of lower lake levels in Gall Lake during the MCA.  相似文献   
5.
Indian monsoon varies in its nature over the geographical regions. Predicting the rainfall not just at the national level, but at the regional level is an important task. In this article, we used a deep neural network, namely, the stacked autoencoder to automatically identify climatic factors that are capable of predicting the rainfall over the homogeneous regions of India. An ensemble regression tree model is used for monsoon prediction using the identified climatic predictors. The proposed model provides forecast of the monsoon at a long lead time which supports the government to implement appropriate policies for the economic growth of the country. The monsoon of the central, north-east, north-west, and south-peninsular India regions are predicted with errors of 4.1%, 5.1%, 5.5%, and 6.4%, respectively. The identified predictors show high skill in predicting the regional monsoon having high variability. The proposed model is observed to be competitive with the state-of-the-art prediction models.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号