首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
地质学   4篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The El Khairat aquifer is an important groundwater aquiferous system, which is considered a major source for drinking and irrigation water in Enfidha in Tunisian Sahel. The analysis of groundwater chemical characteristics provides much important information useful in water resources management. Assessing the water quality status for special use is the main objective of any water monitoring studies. An attempt has been made for the first time in this region to appreciate the quality and/or the suitability of shallow and deep groundwater for drinking and irrigation. In order to attend this objective, a total of 35 representative water samples were collected during February 2007 from both boreholes (17) and wells (18); and analyzed for the major cations (sodium, calcium, magnesium and potassium) and anions (chloride, sulphate, bicarbonate, and nitrate) along with various physical and chemical parameters (temperature, pH, total dissolved salts, and electrical conductivity). Based on the physico-chemical analyses, irrigation quality parameters like sodium absorption ratio (SAR), residual sodium carbonate (RSC), percentage of sodium (Na%), and permeability index (PI) were calculated. In addition to this, iso-concentration maps were constructed using the geographic information system to delineate spatial variation of qualitative parameters of groundwater samples. The correlation of the analytical data has been attempted by plotting different graphical representations such as Piper, Wilcox, and US Salinity Laboratory for the classification of water. The suitability of the water from the groundwater sources for drinking and irrigation purposes was evaluated by comparing the values of different water quality parameters with World Health Organization guideline values for drinking water. A preliminary hydrochemical characterization shows that most of the groundwater samples fall in the field of calcium–magnesium–chloride–sulphate type of water. Majority of the samples are not suitable for drinking purposes and far from drinking water standards. The high EC value and the percentage of Na in most of the groundwater render it unsuitable for irrigation. Wilcox classification suggested that around 50% of both deep and shallow groundwater samples are unsuitable for irrigation. According to the US Salinity Classification, most of the groundwater is unsuitable for irrigation unless special measures are adopted.  相似文献   
2.
The Chtouka-Massa area in Southern Morocco has shown an increase in water scarcity during the last decades, caused mainly by withdrawal of water resources aggravated by agricultural intensification and climate change impacts. To better understand the changes of groundwater quality, a sampling campaign was conducted in many wells during March 2015 and compared to historical chemical data from the hydraulic basin agency, as well as previous studies performed at Ibn Zohr University. All data were used to assess the spatial-temporal evolution of nitrate and salinity relevant to the recent sampling. This paper describes the current state of groundwater quality in the Chtouka-Massa zone with an overview of different sources of water mineralization and the nitrate evolution in an agricultural area. Our results indicate a general increase in mineralization from the north to the south, and from the east to the west. The plain, dominated by farms, shows a relatively high conductivity (up to 2000 μS/cm), while in both costal area and Anti-Atlas Mountain the water salinity shows a gradient increase from the north to the south. However, the highest electrical conductivity is observed along the Massa River. The water type is bicarbonate, chloride, and sodium for farm samples, while from the other parts, it is mostly dominated by chloride and sodium. The spatial-temporal analysis of nitrates generally shows an increasing trend. However, the levels remain overall lower than the limit. The temporal evolution of control points set by the hydraulic agency shows a decreasing trend decline that can be explained by the improvement of agriculture practices, including the conversion towards drip irrigation mode. Different chemical tracers highlighted some processes involving the changes of mineralization of groundwater (e.g., irrigation water return, marine intrusion, and water/rock interaction). The results will be used to improve water management in this area showing water quality degradation.  相似文献   
3.
This paper presents the results of a seasonal survey of heavy metals accumulated in sediments and in the soft parts of the body of the mussel Perna perna at four stations in the Gulf of Annaba (Algeria). Pooled soft tissues from 10 mussels representing the entire range of sizes were digested in nitric acid. Statistical analysis reveals a significant seasonal effect on all the measured metals, the highest values being recorded in winter. With the exception of Cr, the levels for all metals were significantly higher in the east, at the outlet of the Seybouse River, than at all other monitoring stations. The study also shows that north-western waters are subject to a significantly lower degree of heavy metal pollution than elsewhere in the gulf. Levels were nevertheless within the limits of public health standards.  相似文献   
4.
Groundwater is the most important natural resource used for drinking by many people around the world, especially in rural areas. In Tunisia, since the quantity and the quality of water available for different uses is variable from one place to another, groundwater quality in El Khairat deep aquifer was evaluated for its suitability for drinking purposes. To this end, an attempt has been made for the first time in order to determine spatial distribution of groundwater quality parameters and to identify places with the best quality for drinking within the study area based on: (1) an integrated analysis of physical?Cchemical parameters, (2) use of Geographical Information System, and (3) Water Quality Index (WQI) calculation. The physical?Cchemical results were compared with the World Health Organization (WHO) standards for drinking and public health, in order to have an overview of the present groundwater quality. According to the overall assessment of the basin, almost all the parameters analyzed are above the desirable limits of WHO. Using GIS contouring methods with Arcview 3.2a, spatial distribution maps of pH, TDS, EC, TH, Cl, HCO3, SO4, NO3, Ca, Mg, Na, and K have been created. The spatial analysis of groundwater quality patterns of the study area shows that the TDS value increases from north-west to south-east following the general trend of the Khairat aquifer flow direction. The spatial distribution map of TH shows that a majority of the groundwater samples falls in the very hard category. WQI was used to assess the suitability of groundwater from the study area for human consumption. From the WQI assessment, over 82% of the water samples fall within the ??Poor?? and ??Very poor?? categories, suggesting that groundwater from the south-eastern of the El Khairat deep aquifer is unsuitable for drinking purposes.  相似文献   
5.
The metastable superheated solutions are liquids in transitory thermodynamic equilibrium inside the stability domain of their vapor (whatever the temperature is). Some natural contexts should allow the superheating of natural aqueous solutions, like the soil capillarity (low T superheating), certain continental and submarine geysers (high T superheating), or even the water state in very arid environments like the Mars subsurface (low T) or the deep crustal rocks (high T). The present paper reports experimental measurements on the superheating range of aqueous solutions contained in quartz as fluid inclusions (Synthetic Fluid Inclusion Technique, SFIT) and brought to superheating state by isochoric cooling. About 40 samples were synthetized at 0.75 GPa and 530-700 °C with internally-heated autoclaves. Nine hundred and sixty-seven inclusions were studied by micro-thermometry, including measuring the temperatures of homogenization (Th: L + V → L) and vapor bubbles nucleation (Tn: L → L + V). The Th-Tn difference corresponds to the intensity of superheating that the trapped liquid can undergo and can be translated into liquid pressure (existing just before nucleation occurs at Tn) by an equation of state. Pure water (840-935 kg m−3), dilute NaOH solutions (0.1 and 0.5 mol kg−1), NaCl, CaCl2 and CsCl solutions (1 and 5 mol kg−1) demonstrated a surprising ability to undergo tensile stress. The highest tension ever recorded to the best of our knowledge (−146 MPa, 100 °C) is attained in a 5 m CaCl2 inclusion trapped in quartz matrix, while CsCl solutions qualitatively show still better superheating efficiency. These observations are discussed with regards to the quality of the inner surface of inclusion surfaces (high P-T synthesis conditions) and to the intrinsic cohesion of liquids (thermodynamic and kinetic spinodal). This study demonstrates that natural solutions can reach high levels of superheating, that are accompanied by strong changes of their physico-chemical properties.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号