首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
地球物理   4篇
地质学   5篇
  2015年   1篇
  2014年   1篇
  2009年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有9条查询结果,搜索用时 203 毫秒
1
1.
Eclogite, a high-pressure–temperature metamorphic rock characterized by garnet + omphacite, is usually considered to be a product of regional metamorphism under a low geothermal gradient. However, in the Sebadani area of the Sambagawa metamorphic belt most petrologists agree that the eclogite formed by localized contact metamorphism due to intrusion of a body in the solid-state (the Sebadani mass). This process is termed ‘high-pressure contact metamorphism'. However, geological considerations suggest that the effect of such a process would be limited, firstly because the speed of emplacement for solid-state material will generally be much lower than that for magma and secondly because in the solid-state there is no heat of fusion in the body available for thermal effects. Thermal modelling of a solid-state intrusion, based on the heat conduction equation, allows the relationship between size of intrusion, velocity of emplacement and thermal effects to be calculated. Two cases have been considered: (1) a hot model, where none of the heat conducted into the surroundings is lost during the rise of the body; and (2) a cold model where all the heat conducted into the surroundings is lost. These models bracket possible thermal histories of the body. Calculations suggest that in the Sebadani region, production of the observed metamorphic features requires unrealistically high velocity and a much larger intruded body than is observed. These conclusions suggest that it is unlikely that eclogite in the Sebadani area was formed by high-pressure contact metamorphism, but rather that it represents the highest-grade part of the regional Sambagawa metamorphism.  相似文献   
2.
A largely undocumented region of eclogite associated with a thick blueschist unit occurs in the Kotsu area of the Sanbagawa belt. The composition of coexisting garnet and omphacite suggests that the Kotsu eclogite formed at peak temperatures of around 600 °C synchronous with a penetrative deformation (D1). There are local significant differences in oxygen fugacity of the eclogite reflected in mineral chemistries. The peak pressure is constrained to lie between 14 and 25 kbar by microstructural evidence for the stability of paragonite throughout the history recorded by the eclogite, and the composition of omphacite in associated eclogite facies pelitic schist. Application of garnet‐phengite‐omphacite geobarometry gives metamorphic pressures around 20 kbar. Retrograde metamorphism associated with penetrative deformation (D2) is in the greenschist facies. The composition of syn‐D2 amphibole in hematite‐bearing basic schist and the nature of the calcium carbonate phase suggest that the retrograde P–T path was not associated with a significant increase or decrease in the ratio of P–T conditions following the peak of metamorphism. This P–T path contrasts with the open clockwise path derived from eclogite of the Besshi area. The development of distinct P–T paths in different parts of the Sanbagawa belt shows the shape of the P–T path is not primarily controlled by tectonic setting, but by internal factors such as geometry of metamorphic units and exhumation rates.  相似文献   
3.
The convex form of subduction-stage pressure–temperature ( P–T ) paths up to c. 2.0 GPa implies the Sambagawa high- P metamorphic belt, Japan, formed a few million years before ridge subduction. Additional compilation of P–T conditions for higher- P Sambagawa rocks ( c. 2.0–2.5 GPa) reveals that the thermal profile along the slab surface shows a remarkable high- T -ward warping at c. 2.0 GPa ( c. 65 km). Previous thermal models indicate that this warping corresponds to the onset of induced mantle flow towards the subducting slab. If a normal thickness continental crust of c. 30 km was present, this implies the hangingwall region between 30 and 65 km depth was occupied by serpentinized wedge mantle isolated from large-scale mantle flow. Subsequent arrival of the spreading ridge, reheating and dehydration of the serpentinized wedge probably supplied the water necessary for causing granitic magmatism in the Ryoke high- T metamorphic belt, which is paired with the Sambagawa belt.  相似文献   
4.
Known eclogite occurrences in the Sanbagawa metamorphic belt of SW Japan are dominantly in metagabbro bodies which have complex polyphase metamorphic histories. These bodies are generally described as tectonic blocks and their relationship to the Sanbagawa metamorphism is unclear. New findings of foliated eclogite in the Seba and Kotsu areas show that eclogite facies metamorphism is much more widespread than generally thought. Evidence that the foliated eclogite units originated as lavas or sediments implies that these units can be treated as a high-grade part of the subduction-related Sanbagawa metamorphism. Although separated by an along-strike distance of 80 km, the Seba and Kotsu eclogites have very similar garnet and omphacite compositions, suggesting that they were formed under similar metamorphic conditions. However, differences in the associated retrograde assemblages (epidote–amphibolite in the Seba unit and epidote–blueschist in the Kotsu unit) suggest contrasting P – T  paths. In both units, the eclogite rocks occupy the highest structural level of the Sanbagawa belt and overlie rocks metamorphosed at lower pressure. The lower boundary to the eclogite units is therefore a major tectonic discontinuity locally decorated with lenses of exotic material. These features can help trace the boundary into other areas. The previously known outcrops of eclogite show enough similarities with the newly found areas to suggest that all the eclogite facies rocks in the Sanbagawa belt constitute a single nappe that lies at the highest structural levels of the orogen.  相似文献   
5.
The Raman spectra of carbonaceous material (CM) from 19 metasediment samples collected from six widely separated areas of Southwest Japan and metamorphosed at temperatures from 165 to 655°C show systematic changes with metamorphic temperature that can be classified into four types: low‐grade CM (c. 150–280°C), medium‐grade CM (c. 280–400°C), high‐grade CM (c. 400–650°C), and well‐crystallized graphite (> c. 650°C). The Raman spectra of low‐grade CM exhibit features typical of amorphous carbon, in which several disordered bands (D‐band) appear in the first‐order region. In the Raman spectra of medium‐grade CM, the graphite band (G‐band) can be recognized and several abrupt changes occur in the trends for several band parameters. The observed changes indicate that CM starts to transform from amorphous carbon to crystallized graphite at around 280°C, and this transformation continues until 400°C. The G‐band becomes the most prominent peak at high‐grade CM suggesting that the CM structure is close to that of well‐crystallized graphite. In the highest temperature sample of 655°C, the Raman spectra of CM show a strong G‐band with almost no recognizable D‐band, implying the CM grain is well‐crystallized graphite. In the Raman spectra of low‐ to medium‐grade CM, comparisons of several band parameters with the known metamorphic temperature show inverse correlations between metamorphic temperature and the full width at half maximum (FWHM) of the D1‐ and D2‐bands. These correlations are calibrated as new Raman CM geothermometers, applicable in the range of c. 150–400°C. Details of the methodology for peak decomposition of Raman spectra from the low to medium temperature range are also discussed with the aim of establishing a robust and user‐friendly geothermometer.  相似文献   
6.
The Sanbagawa metamorphic belt of southwest Japan is one of the type localities of subduction‐related high‐P metamorphism. However, variable pressure–temperature (PT) paths and metabasic assemblages have been reported for eclogite units in the region, leading to uncertainty about the subduction zone paleo‐thermal structure and associated tectonometamorphic conditions. To analyse this variation, phase equilibria modelling was applied to the three main high‐P metabasic rock types documented in the region – glaucophane eclogite, barroisite eclogite and garnet blueschist – with modelling performed over a range of P, T, bulk rock H2O and bulk rock ferric iron conditions using thermocalc . All samples are calculated to share a common steep prograde PT path to similar peak conditions of ~16–20 kbar and 560–610 °C. The results establish that regional assemblage variation is systematic, with the alternation in peak amphibole phase due to peak conditions overlapping the glaucophane–barroisite solvus, and bulk composition effects stabilizing blueschist v. eclogite facies assemblages at similar PT conditions. Furthermore, the results reveal that a steep prograde PT path is common to all eclogite units in the Sanbagawa belt, indicating that metamorphic conditions were consistent along strike. All localities are compatible with predictions made by a ridge approach model, which attributes eclogite facies metamorphism and exhumation of the Sanbagawa belt to the approach of a spreading ridge.  相似文献   
7.
Zaw Win Ko  M. Enami  M. Aoya   《Lithos》2005,81(1-4):79-100
The Sanbagawa metamorphic rocks in the Besshi district, central Shikoku, are grouped into eclogite and noneclogite units. Chloritoid and barroisite-bearing pelitic schists occur as interlayers within basic schist in an eclogite unit of the Seba area in the Sanbagawa metamorphic belt, central Shikoku, Japan. Major matrix phases of the schists are garnet, chlorite, barroisite, paragonite, phengite, and quartz. Eclogite facies phases including chloritoid and talc are preserved only as inclusions in garnet. PT conditions for the eclogite facies stage estimated using equilibria among chloritoid, barroisite, chlorite, interlayered chlorite–talc, paragonite, and garnet are 1.8 GPa/520–550 °C. Zonal structures of garnet and matrix amphibole show discontinuous growth of minerals between their core and mantle parts, implying the following metamorphic stages: prograde eclogite facies stage→hydration reaction stage→prograde epidote–amphibolite stage. This metamorphic history suggests that the Seba eclogite lithologies were (1) juxtaposed with subducting noneclogite lithologies during exhumation and then (2) progressively recrystallized under the epidote–amphibolite facies together with the surrounding noneclogite lithologies.

The pelitic schists in the Seba eclogite unit contain paragonite of two generations: prograde phase of the eclogite facies included in garnet and matrix phase produced by local reequilibration of sodic pyroxene-bearing eclogite facies assemblages during exhumation. Paragonite is absent in the common Sanbagawa basic and pelitic schists, and is, however, reported from restricted schists from several localities near the proposed eclogite unit in the Besshi district. These paragonite-bearing schists could be lower-pressure equivalents of the former eclogite facies rocks and are also members of the eclogite unit. This idea implies that the eclogite unit is more widely distributed in the Besshi district than previously thought.  相似文献   

8.
Tetsumaru  Itaya  Hironobu  Hyodo  Tatsuki  Tsujimori  Simon  Wallis  Mutsuki  Aoya  Tetsuo  Kawakami  Chitaro  Gouzu 《Island Arc》2009,18(2):293-305
Laser step heating 40Ar/39Ar analysis of biotite and muscovite single crystals from a Barrovian type metamorphic belt in the eastern Tibetan plateau yielded consistent cooling ages of ca. 40 Ma in the sillimanite zone with peak metamorphic temperatures higher than 600°C and discordant ages from 46 to 197 Ma in the zones with lower peak temperatures. Chemical Th‐U‐Total Pb Isochron Method (CHIME) monazite (65 Ma) and sensitive high mass‐resolution ion microprobe (SHRIMP) apatite (67 Ma) dating give the age of peak metamorphism in the sillimanite zone. Moderate amounts of excess Ar shown by biotite grains with ages of 46 to 94 Ma at metamorphic grades up to the high‐grade part of the kyanite zone probably represent incomplete degassing during metamorphism. In contrast, the high‐grade part of the kyanite zone yields biotite ages of 130 to 197 Ma. The spatial distribution of these older ages in the kyanite zone along the sillimanite zone boundary suggests they reflect trapped excess argon that migrated from higher‐grade regions. The most likely source is muscovite that decomposed to form sillimanite. The zone with extreme amounts of excess argon preserves trapped remnants of an ‘excess argon wave’. We suggest this corresponds to the area where biotite cooled below its closure temperature in the presence of an elevated Ar wave. Extreme excess Ar is not recognized in muscovite suggesting that the entrapment of the argon wave by biotite took place when the rocks had cooled down to temperatures lower than the closure temperature of muscovite. The breakdown of phengite during ultrahigh‐pressure (UHP) metamorphism may be a key factor in accounting for the very old apparent ages seen in many UHP metamorphic regions. This is the first documentation of a regional Ar‐wave spatially associated with regional metamorphism. This study also implies that resetting of the Ar isotopic systems in micas can require temperatures up to 600°C; much higher than generally thought.  相似文献   
9.
Mutsuki Aoya 《Island Arc》2002,11(2):91-110
Abstract   Eclogite-bearing units in the Sambagawa Metamorphic Belt have long been considered tectonic blocks that have disparate tectonic and metamorphic histories that are distinct from each other and from the major non-eclogitic Sambagawa schists. However, recent studies have shown that eclogite facies metamorphism of the Seba eclogite unit is related to the subduction event that caused the metamorphism of the non-eclogitic Sambagawa schist. New structural data further show that the Seba eclogite unit, which appears to be isolated from the other eclogite units, is in fact in structural continuity with them, occupying the highest structural levels in the Sambagawa Belt. This suggests that eclogitic metamorphism of the other eclogite units is also related to the Sambagawa subduction event. It is, therefore, possible that all eclogite units in the Sambagawa Belt constitute a single coherent unit, the eclogite nappe, members of which underwent the same eclogitic metamorphism related to the Sambagawa subduction event.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号