首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
地球物理   1篇
地质学   22篇
自然地理   1篇
  2018年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有24条查询结果,搜索用时 610 毫秒
1.
2.
Experimental studies on the interactions between artificial seawater (ASW) and fresh rhyolite, perlite and weakly altered dacitic tuff containing a small amount of smectite suggest changing cation transfer during smectite-forming processes. Initially, dissolution of K from the rocks accompanies incorporation of Mg and Ca from ASW during both earlier (devitrification stage) and later smectite formation, whereas Ca incorporated with early smectite formation redissolves with progressive reaction. Barium mobility increases toward the later smectite-forming reactions. Therefore, the large amounts of barite, anhydrite and gypsum in Kuroko ore deposits are considered to have precipitated from hydrothermal solutions derived from the interaction with previously altered felsic rocks during late smectite formation, rather than by the reaction with fresh felsic rocks.Editorial handling: D. Lentz  相似文献   
3.
Stannite and sphalerite coexisting with iron sulfides (pyrite and/or pyrrhotite) from Japanese ore deposits associated with tin mineralization were analyzed. Based on the iron and zinc partitioning between stannite and sphalerite, the formation temperature and sulfur fugacity for this mineral assemblage were estimated. A good correlation between stannite-sphalerite temperatures and filling temperatures of fluid inclusions and sulfur isotope temperatures was obtained. This good correlation suggests that the stannite-sphalerite pair is a useful indicator of temperature and sulfur fugacity. It is deduced that the formation temperatures are not different for skarn-type, polymetallic vein-type and Sn-W vein-type deposits, whereas the sulfur fugacities are different; sulfur fugacities increase from the skarn-type through the Sn-W vein-type to the polymetallic vein-type deposits.  相似文献   
4.
The chemical composition of native gold and electrum from auriferous vein and gold-silver vein deposits in Japan has been analyzed and summarized. The Ag/Au ratios of native gold and electrum from these two types of deposits are distinct, i.e., 10–20 Ag at % (auriferous vein) and 30–70 Ag at % (gold-silver vein). Thermochemical calculations suggest that the Ag/Au ratio of native gold and electrum should decrease with increasing chloride concentration and temperature. This is consistent with analytical results of native gold and electrum and fluid inclusion studies. Based on the Ag content of native gold and electrum, the Fe content of sphalerite, and the estimated temperatures, it is deduced that the sulfur activity for auriferous vein-type systems was lower than that of gold-silver vein-type systems.  相似文献   
5.
6.
7.
In this study we analyzed the chemical composition of hydrothermally altered dacite and basalt from the Kuroko mining area, northeastern Honshu, Japan, by REE (rare earth element). Features of rare earth element analyses include: (1) altered footwall dacite exhibits a negative Eu anomaly compared with fresh dacite, suggesting preferential removal of Eu2+ from the altered dacite via hydrothermal solutions, (2) altered hangingwall dacite and basalt and dacite and basalt adjacent to ore deposits exhibit positive Eu anomalies compared with fresh dacite and basalt, suggesting addition of Eu2+ from hydrothermal solutions, (3) LREE ratio (∑LREE/∑REE) from altered dacite of chlorite–sericite zone and K-feldspar zone show a negative relationship with δ18O, and La/Sm ratios show a positive correlation with the K2O index. These trends indicate the addition of light rare earth elements such as La to the altered dacite from hydrothermal solution and/or leaching of heavy rare earth elements such as Sm and Yb, (4) Principal component analysis (PCA) indicates that light rare earth elements enrichment is related to the formation of sericite zone near the Kuroko deposits but not to the formations of chlorite and K-feldspar zones, and (5) The correlations among REE features (LREE ratio, MREE ratio, HREE ratio, Eu/Eu?), δ18O and K2O index are not found for montmorillonite zone, mixed layer clay mineral zone and mordenite zone. Therefore, it is inferred that sericite, chlorite and K-feldspar alterations are related to the Kuroko and vein-type mineralization, but montmorillonite and mordenite alterations are not related to the mineralizations, and probably they formed at the post-mineralization stage.  相似文献   
8.
Basalt in the Furutobe District of the Kuroko mine area in Japan is characterized by abundant chlorite and epidote. Fluid inclusion studies indicate that chlorite is formed at lower temperatures (230–250°C) than epidote (250–280°C). The seawater/basalt mass ratio for the early chlorite-rich alteration was high (max. 40), but that for the later alteration was low (0.1–1.8). The CaO, Na2O and SiO2 of the bulk rock correlate negatively with MgO, while FeO and Σ Fe correlate positively with MgO. These changes in the characteristic features of hydrothermal alteration from early to late are generally similar to those for a mid-ocean ridge geothermal system accompanying basalt alteration.The MgO/FeO ratios of chlorite and actinolite and the Fe2O3 concentration of epidote from the basalt are greater than those of mid-ocean ridge basalt probably owing to the differences in the Fe2O3/FeO and MgO/FeO ratios of the parent rocks. The lower CaO concentration and the higher Na2O concentration of the bulk rock compared with altered mid-ocean ridge basalt can be interpreted in terms of the difference in original bulk rock compositions.The Furutobe basalt, as well as other submarine back arc basalts, contains more vesicles filled with hydrothermal minerals (epidote, calcite, quartz, chlorite, pyrite) than do the mid-ocean ridge basalts. The abundance of vesicles plays an important role in controlling the secondary mineralogy and geochemistry of hydrothermally altered submarine back arc basin basalts.  相似文献   
9.
Magnesite, siderite and dolomite are characteristic alteration minerals occurring in Miocene hanging wall rocks of dacitic composition which host the Kuroko orebodies. These carbonates generally occur in a more stratigraphically upper horizon than chlorite alteration zone surrounding the orebodies. The Mg/(Mg+Fe) ratios of the carbonates decrease from the central alteration zone to marginal zone. The Mg/(Mg+Fe) ratios of carbonates and chlorite positively correlate. The δ18O and δ13C values of magnesite, siderite and dolomite positively correlate with each other and lie between the igneous and marine carbonate values. The petrographic, isotopic and fluid inclusion characteristics and thermochemical modelling calculations indicate that magnesite and dolomite formed in the central zone close to the orebodies due to the interaction of hydrothermal solutions with the biogenic marine carbonates. Calcite formed further from the orebodies from hydrothermal fluids which did not contain a biogenic marine carbon component. The compositional and textural relationships indicate that superimposed alterations (chlorite alteration and carbonate alteration) occurred in hanging wall rocks. The mode of occurrences and the Mg/(Mg+Fe) ratios of magnesite and dolomite occurring in hanging wallrocks are useful in the exploration for concealed volcanogenic massive sulfide-sulfate deposits. Received: 9 September 1997 / Accepted: 23 September 1997  相似文献   
10.
In Kamchatka, Central Koryak, Central Kamchatka and East Kamchatka metallogenic belts are distributed from northwest to southeast. K–Ar age, sulfur isotopic composition of sulfide minerals, and bulk chemical compositions of ores were analyzed for 13 ore deposits including hydrothermal gold‐silver and base metal, in order to elucidate the geological time periods of ore formation, relationship to regional volcanic belts, type of mineralization, and origin of sulfur in sulfides. The dating yielded ore‐forming ages of 41 Ma for the Ametistovoe deposit in the Central Koryak, 17.1 Ma for the Zolotoe deposit and 6.9 Ma for the Aginskoe deposit in the Central Kamchatka, and 7.4 Ma for the Porozhistoe deposit and 5.1 Ma for the Vilyuchinskoe deposit in the East Kamchatka metallogenic belt. The data combined with previous data of ore‐forming ages indicate that the time periods of ore formation in these metallogenic belts become young towards the southeast. The averaged δ34SCDT of sulfides are ?2.8‰ for the Ametistovoe deposit in Central Koryak, ?1.8‰ to +2.0‰ (av. ?0.1‰) for the Zolotoe, Aginskoe, Baranievskoe and Ozernovskoe deposits in Central Kamchatka, and ?0.7 to +3.8‰ (av. +1.7‰) for Bolshe‐Bannoe, Kumroch, Vilyuchinskoe, Bystrinskoe, Asachinskoe, Rodnikovoe, and Mutnovskoe deposits in East Kamchatka. The negative δ34SCDT value from the Ametistovoe deposit in Central Koryak is ascribed to the contamination of 32S‐enriched sedimentary sulfur in the Ukelayat‐Lesnaya River trough of basement rock. Comparison of the sulfur isotope compositions of the mineral deposits shows similarity between the Central Koryak and Magadan metallogenic belts, and East Kamchatka and Kuril Islands belts. The Central Kamchatka belt is intermediate between these two groups in term of sulfur isotopic composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号