首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
大气科学   1篇
地球物理   5篇
地质学   14篇
海洋学   1篇
天文学   4篇
自然地理   1篇
  2023年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1998年   1篇
  1990年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Drilling of a deep borehole does not normally allow for hydrologic testing during the drilling period. It is only done when drilling experiences a large loss (or high return) of drilling fluid due to penetration of a large-transmissivity zone. The paper proposes the possibility of conducting flowing fluid electrical conductivity (FFEC) logging during the drilling period, with negligible impact on the drilling schedule, yet providing important information on depth locations of both high- and low-transmissivity zones and their hydraulic properties. The information can be used to guide downhole fluid sampling and post-drilling detailed testing of the borehole. The method has been applied to the drilling of a 2,500-m borehole at Åre, central Sweden, firstly when the drilling reached 1,600 m, and then when the drilling reached the target depth of 2,500 m. Results unveil eight hydraulically active zones from 300 m down to borehole bottom, with depths determined to within the order of a meter. Further, the first set of data allows the estimation of hydraulic transmissivity values of the six hydraulically conductive zones found from 300 to 1,600 m, which are very low and range over one order of magnitude.  相似文献   
2.
Stratified cultural remains from the Early Roman/Nabataean to Byzantine periods in the coastal zone of Aqaba, Jordan, and analyses of thirteen sediment cores provide evidence for changes in the depositional environment during the Holocene. The overall trend in subsurface sediments is a basal marine transgressive layer overlain by a regressional sequence of embayment lagoonal sediments identified from microfossil analyses, and backshore pond, alluvium, and eolian deposits until the 1st century B.C., when mudbrick structures appear. Based on two radiocarbon dates, a brackish water coastal embayment formed prior to ca. 5900–5700 B.C. and was subsequently filled by siltation. Local tectonic subsidence along faults of the Dead Sea transform may have helped form the lagoon. Freshwater Candona sp. ostracods found in sand layers in the lagoon facies show signs of having been transported and redeposited. These data indicate that lakes or marshes were likely located inland of the study area. Supporting faunal and floral evidence for wetter climatic conditions, wetland habitats, and extensive water diversion and agricultural terraces has been excavated at late Chalcolithic (4000–3500 B.C.) sites in the Aqaba region (Khalil & Schmidt, 2009 ). By the 8th century B.C., the depositional environment along the coastal plain of Aqaba was dominated by distal alluvial fan and eolian sedimentation and the shoreline had prograded about 400m seaward. The migration of human settlements since the 8th century B.C. from the center of the valley toward the southeast may be driven by the changing course of Wadi Yutim and conditions along the coastal plain. © 2010 Wiley Periodicals, Inc.  相似文献   
3.
A high-resolution marine geophysical study was conducted during October-November 2006 in the northern Gulf of Aqaba/Eilat, providing the first multibeam imaging of the seafloor across the entire gulf head spanning both Israeli and Jordanian territorial waters. Analyses of the seafloor morphology show that the gulf head can be subdivided into the Eilat and Aqaba subbasins separated by the north-south-trending Ayla high. The Aqaba submarine basin appears starved of sediment supply, apparently causing erosion and a landward retreat of the shelf edge. Along the eastern border of this subbasin, the shelf is largely absent and its margin is influenced by the Aqaba Fault zone that forms a steep slope partially covered by sedimentary fan deltas from the adjacent ephemeral drainages. The Eilat subbasin, west of the Ayla high, receives a large amount of sediment derived from the extensive drainage basins of the Arava Valley (Wadi ’Arabah) and Yutim River to the north–northeast. These sediments and those entering from canyons on the south-western border of this subbasin are transported to the deep basin by turbidity currents and gravity slides, forming the Arava submarine fan. Large detached blocks and collapsed walls of submarine canyons and the western gulf margin indicate that mass wasting may be triggered by seismic activity. Seafloor lineaments defined by slope gradient analyses suggest that the Eilat Canyon and the boundaries of the Ayla high align along north- to northwest-striking fault systems—the Evrona Fault zone to the west and the Ayla Fault zone to the east. The shelf–slope break that lies along the 100 m isobath in the Eilat subbasin, and shallower (70–80 m isobaths) in the Aqaba subbasin, is offset by approx. 150 m along the eastern edge of the Ayla high. This offset might be the result of horizontal and vertical movements along what we call the Ayla Fault on the east side of the structure. Remnants of two marine terraces at 100 m and approx. 150 m water depths line the southwest margin of the gulf. These terraces are truncated by faulting along their northern end. Fossil coral reefs, which have a similar morphological appearance to the present-day, basin margin reefs, crop out along these deeper submarine terraces and along the shelf–slope break. One fossil reef is exposed on the shelf across the Ayla high at about 60–63 m water depth but is either covered or eroded in the adjacent subbasins. The offshore extension of the Evrona Fault offsets a fossil reef along the shelf and extends south of the canyon to linear fractures on the deep basin floor.  相似文献   
4.
The single-well injection-withdrawal (SWIW) tracer test is a method used to estimate the tracer retardation properties of a fracture or fracture zone. The effects of single-fracture aperture heterogeneity on SWIW-test tracer breakthrough curves are examined by numerical modelling. The effects of the matrix diffusion and sorption are accounted for by using a particle tracking method through the addition of a time delay added to the advective transport time. For a given diffusion and sorption property (P m) value and for a heterogeneous fracture, the peak concentration is larger compared to a homogeneous fracture. The cumulative breakthrough curve for a heterogeneous fracture is similar to that for a homogeneous fracture and a less sorptive/diffusive tracer. It is demonstrated that the fracture area that meets the flowing water, the specific flow-wetted surface (sFWS) of the fracture, can be determined by matching the observed breakthrough curve for a heterogeneous fracture to that for a homogeneous fracture with an equivalent property parameter. SWIW tests are also simulated with a regional pressure gradient present. The results point to the possibility of distinguishing the effect of the regional pressure gradient from that of diffusion through the use of multiple tracers with different P m values.  相似文献   
5.
Laboratory and field experiments done on fractured rock show that flow and solute transport often occur along flow channels. ‘Sparse channels’ refers to the case where these channels are characterised by flow in long flow paths separated from each other by large spacings relative to the size of flow domain. A literature study is presented that brings together information useful to assess whether a sparse-channel network concept is an appropriate representation of the flow system in tight fractured rock of low transmissivity, such as that around a nuclear waste repository in deep crystalline rocks. A number of observations are made in this review. First, conventional fracture network models may lead to inaccurate results for flow and solute transport in tight fractured rocks. Secondly, a flow dimension of 1, as determined by the analysis of pressure data in well testing, may be indicative of channelised flow, but such interpretation is not unique or definitive. Thirdly, in sparse channels, the percolation may be more influenced by the fracture shape than the fracture size and orientation but further studies are needed. Fourthly, the migration of radionuclides from a waste canister in a repository to the biosphere may be strongly influenced by the type of model used (e.g. discrete fracture network, channel model). Fifthly, the determination of appropriateness of representing an in situ flow system by a sparse-channel network model needs parameters usually neglected in site characterisation, such as the density of channels or fracture intersections.  相似文献   
6.
7.
We examine the possibility of using the flow dimension identified from constant pressure injection tests as a tool for characterizing the hydraulic conditions of fractured media. The data comes from a low-conductivity crystalline rock site, from depths of up to 450 m, and is obtained with 2 m and 10 m measurement scales. In the analysis, the general solution for n-dimensional flow by Barker (1988) is applied. The results show that the most prominent characteristics of the medium can be identified; that is, linear and sublinear flow dimensions as distinguished from dimensions higher than two. In many cases, however, there is significant difficulty in distinguishing the dimensions n = 2, 2.5, and 3 from each other. This is usually because of the experimental difficulties in achieving the ideal conditions required by the theory during the early part of the experiment. In such cases, a full flow curve is not available for the type-curve fitting. In the nonunique cases the higher dimensions typically correspond to higher, sometimes unrealistically high, values of specific storage and to the less reliable and less representative early part of the experiment. Therefore, most of the dimensions in categories n = 3 can be excluded, thus leaving the majority observations in the categories of n = 2 and n = 2-2.5. The dominance of dimension n = 2 is more pronounced for data related to fracture zones in comparison to that related to "average" rock, in particular in the 2 m scale data. The proportion of low (n < 1.5) flow dimensions is small, but for the 10 m scale data it is relatively higher at greater depths and corresponds to lower conductivities. For the smaller 2 m scale data, the low dimensions are not linked to greater depths or systematically smaller conductivities, giving preliminary indication of different flow dimension behavior for the two different scales.  相似文献   
8.
Quaternary sedimentary deposits along the structural depression of the San Andreas fault (SAF) zone north of San Francisco in Marin County provide an excellent record of rates and styles of neotectonic deformation in a location near where the greatest amount of horizontal offset was measured after the great 1906 San Francisco earthquake. A high-resolution gravity survey in the Olema Valley was used to determine the depth to bedrock and the thickness of sediment fill along and across the SAF valley. In the gravity profile across the SAF zone, Quaternary deposits are offset across the 1906 fault trace and truncated by the Western and Eastern Boundary faults, whose youthful activity was previously unknown. The gravity profile parallel to the fault valley shows a basement surface that slopes northward toward an area of present-day subsidence near the head of Tomales Bay. Surface and subsurface investigations of the late Pleistocene Olema Creek Formation (Qoc) indicate that this area of subsidence was located further south during deposition of the Qoc and that it has migrated northward since then. Localized subsidence has been replaced by localized contraction that has produced folding and uplift of the Qoc. This apparent alternation between transtension and transpression may be the result of a northward-diverging fault geometry of fault strands that includes the valley-bounding faults as well as the 1906 SAF trace. The Vedanta marsh is a smaller example of localized subsidence in the fault zone, between the 1906 SAF trace and the Western Boundary fault. Analyses of Holocene marsh sediments in cores and a paleoseismic trench indicate thickening, and probably tilting, toward the 1906 trace, consistent with coseismic deformation observed at the site following the 1906 earthquake.New age data and offset sedimentary and geomorphic features were used to calculate four late Quaternary slip rate estimates for the SAF at this latitude. Luminescence dates of 112–186 ka for the middle part of the Olema Creek Formation (Qoc), the oldest Quaternary deposit in this part of the valley, suggest a late Pleistocene slip rate of 17–35 mm/year, which replaces the unit to a position adjacent to its sediment source area. A younger alluvial fan deposit (Qqf; basal age 30 ka) is exposed in a quarry along the medial ridge of the fault valley. This fan deposit has been truncated on its western side by dextral SAF movement, and west-side-down vertical movement that has created the Vedanta marsh. Paleocurrent measurements, clast compositions, sediment facies distributions, and soil characteristics show that the Bear Valley Creek drainage, now located northwest of the site, supplied sediment to the fan, which is now being eroded. Restoration of the drainage to its previous location provides an estimated slip rate of 25 mm/year. Furthermore, the Bear Valley Creek drainage probably created a water gap located north of the Qqf deposit during the last glacial maximum 18 ka. The amount of offset between the drainage and the water gap yields an average slip rate of 21–30 mm/year. Finally, displacement of a 1000-year-old debris lobe approximately 20 m from its hillside hollow along the medial ridge indicates a minimum late Holocene slip rate of 21–25 mm/year. Similarity of the late Pleistocene rates to the Holocene slip rate, and to previous rates obtained in paleoseismic trenches in the area, indicates that the rates may not have changed over the past 30 ka, and perhaps the past 200–400 ka. Stratigraphic and structural observations also indicate that valley-bounding faults were active in the late Pleistocene and suggest the need for further study to evaluate their continued seismic potential.  相似文献   
9.
The question of how well the true underlying hydraulic conductivity statistics of heterogeneous media are captured by well tests is addressed. The hydraulic conductivity value and the corresponding support volume associated with a theoretical well are correlated, causing a bias in the statistics derived from well-test analyses. Statistics derived from numerically simulated well tests are compared with the known underlying conductivity statistics and the results indicate an under-prediction by simulations at higher hydraulic conductivities. The deviation starts at about mean conductivity and can be as large as an order of magnitude, with the conductivity in the vicinity of the well defining the upper boundary. In other words, the conductivity value interpreted from the well test cannot be larger than the value that the well test first encounters. Consequently, for data in this simulation exercise, the standard deviation, if only determined for the upper range of the conductivity values, would be underestimated by a factor of 1.6–2. While this specific range is likely to depend on the scale and degree of the underlying heterogeneity as well as the duration of the test, the results should be indicative of a more general behaviour and are likely to occur in other heterogeneous data as well.
Resumen Se plantea la pregunta de qué tan bien son representadas en las pruebas de pozo, las estadísticas reales de conductividad hidráulica subyacente de medios heterogéneos. Son correlacionados el valor de conductividad hidráulica y el volumen de apoyo correspondiente asociado con un pozo teórico, causando una distorsión en las estadísticas derivadas del análisis de la prueba de pozo. Las estadísticas derivadas de las pruebas de pozo simuladas numéricamente son comparadas con las estadísticas de conductividad subyacente conocidas, y los resultados indican una sub-predicción por las simulaciones hechas con conductividades hidráulicas más altas. La desviación empieza casi con la conductividad media y puede ser tan grande como un orden de magnitud, con la conductividad en la vecindad del pozo definiendo el límite superior. En otras palabras, el valor de conductividad interpretado a partir de la prueba del pozo no puede ser más grande que el valor que la prueba de pozo encuentre primero. Por consiguiente, para los datos en este ejercicio de simulación, la desviación estándar, si solamente fue determinada para el rango superior de los valores de conductividad, se subestimaría en un factor de 1.6–2. Mientras es probable que este rango específico dependa de la escala y del grado de la heterogeneidad subyacente, así como de la duración de la prueba, los resultados deben ser indicativos de un comportamiento más general y son probables también de ocurrir en otros datos heterogéneos.

Résumé Nous posons ici la question de savoir dans quelle mesure les statistiques de la conductivité hydraulique des milieux hétérogènes pourrait être révélée par des essais de puits. La valeur de la conductivité hydraulique et le volume capté correspondant sont corrélés, créant un biais dans l’analyse des statistiques dérivées des essais de puits. Les statistiques en provenance de simulations numériques d’essais de puits sont comparées avec les statistiques de conductivités connues et les résultats indiquent une sous-évaluation par les simulations, pour les conductivités hydrauliques les plus élevées: la déviation commence à partir de la valeur moyenne de la conductivité et peut atteindre la magnitude d’un ordre de grandeur en considérant la conductivité mesurée au voisinage du puits. Autrement dit, la valeur de la conductivité interprétée via l’essais de pompage ne peut être plus importante que les premières valeurs rencontrées. Par conséquence, pour les données de cet exercice de simulation, la déviation standard sera sous-estimée d’un facteur compris entre 1.6–2 pour les valeurs les plus élevées. Tandis que l’échelle spécifique de valeurs est dépendante de l’échelle et du degré de l’hétérogénéité souterraine, de même que de la durée du test, les résultats pourraient être indicatifs d’un comportement plus général et seraient sans doute observables dans d’autres cas de données hétérogènes.
  相似文献   
10.
Ground-penetrating radar (GPR) was used in an effort to locate a major active fault that traverses Aqaba City, Jordan. Measurements over an exposed (trenched) cross fault outside of the city identify a radar signature consisting of linear events and horizontal offset/flexured reflectors both showing a geometric correlation with two known faults at a control site. The asymmetric linear events are consistent with dipping planar reflectors matching the known direction of dip of the faults. However, other observations regarding this radar signature render the mechanism generating these events more complex and uncertain.GPR measurements in Aqaba City were limited to vacant lots. Seven GPR profiles were conducted approximately perpendicular to the assumed strike of the fault zone, based on regional geological evidence. A radar response very similar to that obtained over the cross fault was observed on five of the profiles in Aqaba City, although the response is weaker than that obtained at the control site. The positions of the identified responses form a near straight line with a strike of 45°. Although subsurface verification of the fault by trenching within the city is needed, the geophysical evidence for fault zone location is strong. The location of the interpreted fault zone relative to emergency services, military bases, commercial properties, and residential areas is defined to within a few meters. This study has significant implications for seismic hazard analysis in this tectonically active and heavily populated region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号