首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   3篇
大气科学   1篇
地球物理   18篇
地质学   34篇
海洋学   2篇
天文学   1篇
自然地理   3篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1990年   1篇
  1984年   1篇
  1982年   1篇
  1974年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
Zircon and apatite fission track ages were determined on granulites dredged along the Bay of Biscay margins. A sample from Ortegal Spur (Iberia margin) yielded 725 ± 67 Ma (zircon). A sample from Le Danois Bank (Iberia margin) yielded 284 ± 58 Ma (zircon), indicating post‐Variscan cooling. Apatite from this sample gave 52 ± 2 Ma, interpreted as final cooling after ‘Pyrenean’ thrust imbrication. Two other samples from Le Danois Bank have Early Cretaceous apatite ages (138 ± 7 and 120 ± 8 Ma), interpreted to result from exhumation during rifting. Finally, a granulite from Goban Spur (Armorican margin) gave 212 ± 10 Ma (apatite), coinciding with a precursory rifting phase. Together with published radiometric results, these data indicate a Precambrian high‐grade terrane at the site of the current margins. The distribution of the granulites on the seafloor reflects tectonic and erosional processes related to (a) Mesozoic rifting and (b) Early Tertiary incipient subduction of the Bay of Biscay beneath Iberia.  相似文献   
2.
Blueschist facies rocks in the Yuli Belt of Taiwan's Central Range record ongoing subduction of the Eurasian plate. We present a prograde Lu–Hf garnet–whole‐rock age of 5.1 ± 1.7 Ma from a retrogressed blueschist in the Yuli Belt. This age is considerably younger than the previously assumed age of 14–8 Ma for high‐pressure metamorphism in the Yuli Belt and represents the youngest Lu–Hf garnet age ever recorded for blueschist facies metamorphism. The age sheds new light on the palaeogeographic origin and exhumation scenario of the Yuli Belt. We propose that the Yuli Belt originated from the ocean–continent boundary of the Chinese passive margin. It was subducted eastward during collision with the Luzon island arc and rapidly exhumed when the forearc lithosphere was removed from above the continental slab by discrete subduction (extraction). This process reduces the pressure above the continental slab and may prompt the ascent of subducted crust into the opening gap. Thus, it can control the exhumation of high‐pressure rocks.  相似文献   
3.
The boundary zone between two Penninic nappes, the eclogite-facies to ultrahigh-pressure Zermatt-Saas zone in the footwall and the blueschist-facies Combin zone in the hanging wall, has been interpreted previously as a major normal fault reflecting synorogenic crustal extension. Quartz textures of mylonites from this fault were measured using neutron diffraction. Together with structural field observations, the data allow a refined reconstruction of the kinematic evolution of the Pennine nappes. The main results are: (1) the contact is not a normal fault but a major thrust towards northwest which was only later overprinted by southeast-directed normal faulting; (2) exhumation of the footwall rocks did not occur during crustal extension but during crustal shortening; (3) the Sesia-Dent Blanche nappe system originated from a continental fragment (Cervinia) in the Alpine Tethys ocean, and the Combin zone ophiolites from the ocean basin southeast of Cervinia; (4) out-of-sequence thrusting played a major role in the tectonic evolution of the Penninic nappes. An erratum to this article can be found at  相似文献   
4.
Four species of marine calcifying algae, the coccolithophores Calcidiscus leptoporus, Helicosphaera carteri, Syracosphaera pulchra and Umbilicosphaera foliosa were grown in laboratory cultures under temperatures varying between 14 and 23 °C, and one species, C. leptoporus, under varying [CO32−], ranging from 105 to 219 μmol/kg. Calcium isotope compositions of the coccoliths resemble in both absolute fractionation and temperature sensitivity previous calibrations of marine calcifying species e.g. Emiliania huxleyi (coccolithophores) and Orbulina universa (planktonic foraminifera) as well as inorganically precipitated CaCO3, but also reveal small species specific differences. In contrast to inorganically precipitated calcite, but similar to E. huxleyi and O. universa, the carbonate ion concentration of the medium has no statistically significant influence on the Ca isotope fractionation of C. leptoporus coccoliths; however, combined data of E. huxleyi and C. leptoporus indicate that the observed trends might be related to changes of the calcite saturation state of the medium. Since coccoliths constitute a significant portion of the global oceanic CaCO3 export production, the Ca isotope fractionation in these biogenic structures is important for defining the isotopic composition of the Ca sink of the ocean, one of the key parameters for modelling changes to the marine Ca budget over time. For the present ocean our results are in general agreement with the previously postulated and applied mean value of the oceanic Ca sink (Δsed) of about − 1.3‰, but the observed inter- and intra-species differences point to possible changes in Δsed through earth history, due to changing physico-chemical conditions of the ocean and shifts in floral and faunal assemblages.  相似文献   
5.
Changing content of detrital input in laminated sediments traced by XRF scanning and microfacies analyses reflect prominent variations in sedimentation processes in the Aral Sea. A high-resolution record of titanium from a core retrieved in the northwestern Large Aral Sea allows a continuous reconstruction of wind strength and frequency in western Central Asia for the past 1500 yr. During AD 450–700, AD 1210–1265, AD 1350–1750 and AD 1800–1975, detrital inputs (bearing titanium) are high, documenting an enhanced early spring atmospheric circulation associated with an increase in intensity of the Siberian High pressure system over Central Asia. In contrast, lower titanium content during AD 1750–1800 and AD 1980–1985 reflects a diminished influence of the Siberian High during early spring with a reduced atmospheric circulation. A moderate circulation characterizes the time period AD 700–1150. Unprecedented weakened atmospheric circulation over western Central Asia are inferred during ca. AD 1180–1210 and AD 1265–1310 with a considerable decrease in dust storm frequency, sedimentation rates, lamination thickness and detrital inputs (screened at 40-μm resolution). Our results are concurrent with changes in the intensity of the Siberian High during the past 1400 yr as reported in the GISP2 Ice Core from Greenland.  相似文献   
6.
Seasonal snowpacks in marginal snow environments are typically warm and nearly isothermal, exhibiting high inter‐ and intra‐annual variability. Measurements of snow depth and snow water equivalent were made across a small subalpine catchment in the Australian Alps over two snow seasons in order to investigate the extent and implications of snowpack spatial variability in this marginal setting. The distribution and dynamics of the snowpack were found to be influenced by upwind terrain, vegetation, solar radiation, and slope. The role of upwind vegetation was quantified using a novel parameter based on gridded vegetation height. The elevation range of the catchment was relatively modest (185 m), and elevation impacted distribution but not dynamics. Two characteristic features of marginal snowpack behaviour are presented. Firstly, the evolution of the snowpack is described in terms of a relatively unstable accumulation state and a highly stable ablation state, as revealed by temporal variations in the mean and standard deviation of snow water equivalent. Secondly, the validity of partitioning the snow season into distinct accumulation and ablation phases is shown to be compromised in such a setting. Snow at the most marginal locations may undergo complete melt several times during a season and, even where snow cover is more persistent, ablation processes begin to have an effect on the distribution of the snowpack early in the season. Our results are consistent with previous research showing that individual point measurements are unable to fully represent the variability in the snowpack across a catchment, and we show that recognising and addressing this variability are particularly important for studies in marginal snow environments.  相似文献   
7.
The multi-decadal wave conditions in the North Sea can be influenced by anthropogenic climate change. That may lead to the intensification of wave extremes in the future and consequently increase risks for the coastal areas as well as for on- and offshore human activities. Potential changes caused by alteration of atmospheric patterns are investigated. Four transient climate projections (1961–2100), reflecting two IPCC emission scenarios (A1B and B1) and two different initial states, are used to simulate the wave scenarios. The potential wind-induced changes in waves are studied by comparing future statistics (2001–2100) with the corresponding reference conditions (1961–2000). Generally, there is a small increase in future 99th percentile significant wave height for most eastern parts of the North Sea towards the end of the twenty-first century. This small increase is superimposed by a strong variability of the annual extremes on time scales of decades. Opposite to the differences in wave height, the change in wave direction to more waves propagating east shows less decadal variability and is more uniform among all realizations. Nevertheless, temporal and spatial differences of the wave height in the four climate projections point to the uncertainties in the climate change signals.  相似文献   
8.
The Zagros fold and thrust belt is a seismically active orogen that has accommodated the N–S shortening between the Arabian and Eurasian plates since the Miocene. Whereas the southeast parts of the belt have been studied in detail, the northwest extent has received considerably less attention, being part of the Republic of Iraq. In this study, we investigate fold growth in the area NE of Erbil (Kurdistan, Iraq). In particular, we focus on the interaction of the transient development of drainage patterns along growing antiforms, as this directly reflects the kinematics of progressive fold growth. Detailed geomorphological studies of the Bana Bawi‐, Permam‐ and Safeen‐fold trains show that these anticlines did not develop from a single embryonic fold but by lateral linkage of several different fold segments. These segments, with length between 5 and 25 km, have been detected by mapping ancient and modern river courses; these initially cut the nose of growing folds until eventually defeated, leaving curved wind gaps behind. Depending on the alignment of the initial embryonic folds, the segments can either record a linear‐ or an en‐echelon linkage. Comparison of natural examples from the Zagros fold and thrust belt in Iraq with published numerically modelled fold growth suggests that both linear‐linkage and en‐echelon linkage are mechanically feasible and are common processes during progressive shortening and fold growth.  相似文献   
9.
Calcium isotope fractionation in calcite and aragonite   总被引:1,自引:0,他引:1  
Calcium isotope fractionation was measured on skeletal aragonite and calcite from different marine biota and on inorganic calcite. Precipitation temperatures ranged from 0 to 28°C. Calcium isotope fractionation shows a temperature dependence in accordance with previous observations: 1000 · ln(αcc) = −1.4 + 0.021 · T (°C) for calcite and 1000 · ln(αar) = −1.9 + 0.017 · T (°C) for aragonite. Within uncertainty the temperature slopes are identical for the two polymorphs. However, at all temperatures calcium isotopes are more fractionated in aragonite than in calcite. The offset in δ44/40Ca is about 0.6‰. The underlying mechanism for this offset may be related to the different coordination numbers and bond strengths of the calcium ions in calcite and aragonite crystals, or to different Ca reaction behavior at the solid-liquid interface. Recently, the observed temperature dependence of the Ca isotope fractionation was explained quantitatively by the temperature control on precipitation rates of calcium carbonates in an experimental setting (Lemarchand et al., 2004). We show that this mechanism can in principle also be applied to CaCO3 precipitation in natural environments in normal marine settings. Following this model, Ca isotope fractionation in marine Ca carbonates is primarily controlled by precipitation rates. On the other hand the larger Ca isotope fractionation of aragonite compared to calcite can not be explained by different precipitation rates. The rate control model of Ca isotope fractionation predicts a strong dependence of the Ca isotopic composition of carbonates on ambient CO32− concentration. While this model is in general accordance with our observations in marine carbonates, cultured specimens of the planktic foraminifer Orbulina universa show no dependence of Ca-isotope fractionation on the ambient CO32− concentration. The latter observation implies that the carbonate chemistry in the calcifying vesicles of the foraminifer is independent from the ambient carbonate ion concentration of the surrounding water.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号