首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  国内免费   2篇
大气科学   1篇
地质学   39篇
天文学   1篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2017年   4篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   1篇
  2006年   5篇
  2003年   1篇
  1985年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
The reasons for the isotopic and geochemical heterogeneity of magmatism of the Neoproterozoic large Volhynia-Brest igneous province (VBP) are considered. The province was formed at 550 Ma in response to the break up of the Rodinia supercontinent and extends along the western margin of the East European craton, being discordant to the Paleoproterozoic mobile zone that separates Sarmatia and Fennoscandia and the Mesoproterozoic Volhynia-Orsha aulacogen. The basalts of VBP show prominent spatiotemporal geochemical zoning. Based on petrographic, mineralogical, geochemical, and isotopic data, the following types of basalts can be distinguished: olivine-normative subalkaline basalts consisting of low-Ti (sLT, < 1.10–2.0 wt % TiO2; εNd(550) from ?6.6 to ?2.7) and medium-Ti (sMT, 2.0–3.0 wt % TiO2, occasionally up to 3.6 wt % TiO2; εNd(550) from ?3.55 to + 0.6) varieties; normal quartz-normative basalts (tholeiites) including low-Ti (tLT, < 1.75–2.0 wt % TiO2) and medium-to-high-Ti (tHT1, 2.0–3.6 wt % TiO2, εNd(550) from ?1.3 to + 1.0) varieties. The hypabyssal bodies are made up of subalkaline low-Ti olivine dolerites (LT, 1.2–1.5 wt % TiO2; εNd(550) = ?5.8) and subalkaline high-Ti olivine gabbrodolerites (HT2, 3.0–4.5 wt % TiO2; εNd(550) = ?2.5). Felsic rocks of VBP are classed as volcanic rocks of normal (andesidacites, dacites, and rhyodacites) and subalkaline (trachyrhyodacites) series with TiO2 0.72–0.77 wt% and εNd(550) of ?12. The central part of VBP is underlain by a Paleoproterozoic domain formed by continent-arc accretion and contains widespread sills of HT2 dolerites and lavas of LT basalts; the northern part of the province is underlain by the juvenile Paleoproterozoic crust dominated by MT and HT1 basalts. MT and LT basalts underwent significant AFC-style upper crustal contamination. During their long residence in the upper crustal magmatic chambers, the basaltic melts fractionated and caused notable heating of the wall rocks and, correspondingly, nonmodal melting of the upper crustal protolith containing high-Rb phase (biotite), thus producing the most felsic rocks of the province. The basalts of VBP were derived from geochemically different sources: probably, the lithosphere and a deep-seated plume (PREMA type). The HT2 dolerites were generated mainly from a lithospheric source: by 3–4% melting of the geochemically enriched garnet lherzolite mantle. LT dolerites were obtained by partial melting of the modally metasomatized mantle containing volatile-bearing phases. The concepts of VBP formation were summarized in the model of three-stage plume-lithosphere interaction.  相似文献   
2.
3.
Several episodes of kimberlite magmatism occurred in the East European Province (EEP) during a long (about 1.5 Gyr) time period, from the Late Paleoproterozoic (ca. 1.8 Ga) in the Archean Ukrainian and Baltic shields to the Middle Paleozoic (ca. 0.36 Ga) mainly in the Arkhangelsk, Timan, and adjacent regions. Based on the analysis of data on 16 kimberlite occurrences and four lamproite occurrences within the EEP, five time stages can be distinguished; one of them, the Middle Paleozoic stage (Middle Ordovician and Devonian), is the most productive epoch for diamond in the northern hemisphere (EEP, Siberian Craton, and part of the China Craton). The analysis of petrological and geochemical characteristics of kimberlites (lamproites were studied less thoroughly) revealed variations in rock composition and their correlation with a number of factors, including the spatial confinement to the northern or southern Archean blocks of the craton, time of formation of the source of kimberlite melts, contents of volatiles and autoliths, etc. Three petrogeochemical types of kimberlites were distinguished: high-, medium-, and low-Ti (TiO2 > 3 wt %, 1–3 wt %, and <1 wt %, respectively). There are two time intervals of the formation of kimberlite and lamproite sources in the EEP, corresponding to TNd(DM) values of about 2 Ga (up to 2.9 Ga in the Por’ya Guba occurrence) and 1 Ga. The latter interval includes two groups of occurrences with model source ages of about 1 Ga (low-and medium-Ti kimberlites of the Zolotitsa and Verkhotina occurrences) and about 0.8 Ga (high-Ti kimberlites of the Kepino and a number of other occurrences); i.e., there seems to be an evolutionary trend in the composition of kimberlites. Concentric zoning patterns were recognized. The role of the crust in kimberlite sources is discussed; it is assumed that buried remnants of the oceanic lithosphere (megaliths) may underlie whole continents. A unique feature of the composition of low-Ti kimberlites, for instance, kimberlites of the Zolotitsa occurrence (to a smaller extent, medium-Ti kimberlites of the V. Grib pipe) is the distinct depletion of highly charged elements and pronounced negative anomalies of Ti, Zr, Th, U, Nb, and Ta in trace-element distribution patterns, which indicates a contribution of crustal material to the source of these kimberlites. It was shown that autoliths exert a significant influence on the differentiation of kimberlite material, resulting in the enrichment of rocks in the whole spectrum of incompatible elements. It was argued that geochemical criteria can be used together with traditional criteria (including those based on indicator minerals) for the assessment of diamond potential in EEP occurrences. We hope that such a combined approach will yield important outcomes in the future.  相似文献   
4.
5.
Lithofacies of the productive Upper Triassic-Lower Jurassic deposits of the Eastern Caspian region, studied in wells on the Caspian coast and exposed in the outcrops of the Mountainous Mangyshlak, are described and analyzed. The similarity of the structure of the Mesozoic sedimentary beds of the Middle Caspian Basin and of those of the land adjacent to its eastern coast is confirmed. Comparative analysis of lithofacies allowed the reconstruction of the paleogeographic setting and depositional environments in the studied region during the Early Jurassic. A unique fossil plant occurrence is discovered in the upper part of the Lower Jurassic series (in the lower subformation of the Kokala Formation; Eastern Caspian region). Fossil plant taphonomy and the lithology of host rocks in the occurrence resulted from unusual paleogeographic settings that existed in the Middle Caspian Basin at the time of the Early-Middle Jurassic boundary.  相似文献   
6.
Doklady Earth Sciences - High-precision dating of granitoids is of key significance for age identification of the main stages of crust formation in various blocks of the continental crust. Here we...  相似文献   
7.
Varioles and matrix have been studied in the typical globular rocks??variolites of the Yalguba Range and Suisari Island in the Onega structure, Central Karelia. It was determined that the cores of the varioles are significantly enriched in silica, Na, K, Rb, Cl, and Ba, and have lower K/Na ratio as compared to matrix. In addition, varioles strongly differ from matrix in oxygen isotope composition (??18Ov-??18Om varies from 1.6 to 2.6??). The consideration of possible mechanisms of the formation of the Onega variolites with allowance for available isotopic and geochemical data (major element composition, REE and trace element distribution) demonstrated that the observed geochemical characteristics of matrix and globules of the Yalguba Range and Suisari Island variolites cannot be formed by melt mixing. Such processes as greenstone alteration and crystallization of spherulites during melt overcooling also did not define the isotopic and geochemical peculiarities of the Onega variolites, but played only subordinate role. Except for significant oxygen isotope shift in the variole-matrix system, the obtained data are best consistent with liquation model. However, few available experimental data on the distribution of trace elements and oxygen isotopes during liquid immiscibility make it impossible to reach decisive conclusion concerning liquation genesis of the Onega variolites.  相似文献   
8.
9.
The paper reports detailed data on phlogopite from kimberlite of three facies types in the Arkhangelsk Diamondiferous Province (ADP): (i) massive magmatic kimberlite (Ermakovskaya-7 Pipe), (ii) transitional type between massive volcaniclastic and magmatic kimberlite (Grib Pipe), and (iii) volcanic kimberlite (Karpinskii-1 and Karpinskii-2 pipes). Kimberlite from the Ermakovskaya-7 Pipe contains only groundmass phlogopite. Kimberlite from the Grib Pipe contains a number of phlogopite populations: megacrysts, macrocrysts, matrix phlogopite, and this mineral in xenoliths. Phlogopite macrocrysts and matrix phlogopite define a single compositional trend reflecting the evolution of the kimberlite melt. The composition points of phlogopite from the xenoliths lie on a single crystallization trend, i.e., the mineral also crystallized from kimberlite melt, which likely actively metasomatized the host rocks from which the xenoliths were captured. Phlogopite from volcaniclastic kimberlite from the Karpinskii-1 and Karpinskii-2 pipes does not show either any clearly distinct petrographic setting or compositional differentiation. The kimberlite was dated by the Rb–Sr technique on phlogopite and additionally by the 40Ar/39Ar method. Because it is highly probable that phlogopite from all pipes crystallized from kimberlite melt, the crystallization age of the kimberlite can be defined as 376 ± 3 Ma for the Grib Pipe, 380 ± 2 Ma for the Karpinskii-1 pipe, 375 ± 2 Ma for the Karpinskii-2 Pipe, and 377 ± 0.4 Ma for the Ermakovskaya-7 Pipe. The age of the pipes coincides within the error and suggests that the melts of the pipes were emplaced almost simultaneously. Our geochronologic data on kimberlite emplacement in ADP lie within the range of 380 ± 2 to 375 ± Ma and coincide with most age values for Devonian alkaline–ultramafic complexes in the Kola Province: 379 ± 5 Ma; Arzamastsev and Wu, 2014). These data indicate that the kimberlite was formed during the early evolution of the Kola Province, when alkaline–ultramafic complexes (including those with carbonatite) were emplaced.  相似文献   
10.
The results of geochronological, mineralogical, petrographical, and geochemical study of the Ilbokich ultramafic lamprophyre are reported. The specific features in the mineral and chemical compositions of the studied ultramafic lamprophyre indicate that it can be regarded as a variety similar to aillikite, while other differences dominated by K-feldspar can be referred to damtjernite. According to Rb–Sr analysis, ultramafic lamprophyre dikes intruded at the turn of the Early and Middle Devonian, about 392 Ma ago. This directly proves the existence of Early Paleozoic alkali–ultramafic magmatism in the northern part of the southwest Siberian Platform. A finding of Devonian alkali–ultramafic lamprophyre is of dual predictive importance. On the one hand, it is indicative of the low probability of finding large diamond-bearing deposits in close association with aillikite. On the other hand, it can be indicative of a possible large Devonian diamond province in the studied territory, where diamondiferous kimberlite is structurally separated from aillikite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号