首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   5篇
  2011年   1篇
  2007年   1篇
  1991年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有5条查询结果,搜索用时 10 毫秒
1
1.
The extent and behaviour of the southeast margin of the Laurentide Ice Sheet in Atlantic Canada is of significance in the study of Late Wisconsinan ice sheet-ocean interactions. Multibeam sonar imagery of subglacial, ice-marginal and glaciomarine landforms on German Bank, Scotian Shelf, provides evidence of the pattern of glacial-dynamic events in the eastern Gulf of Maine. Northwest-southeast trending drumlins and megaflutes dominate northern German Bank. On southern German Bank, megaflutes of thin glacial deposits create a distinct northwest-southeast grain. Lobate regional moraines (>10km long) are concave to the northwest, up-ice direction and strike southwest-northeast, normal to the direction of ice flow. Ubiquitous, overlying De Geer moraines (<10 km long) also strike southwest-northeast. The mapped pattern of moraines implies that, shortly after the last maximum glaciation, the tidewater ice sheet began to retreat north from German Bank, forming De Geer moraines at the grounding line with at least one glacial re-advance during the general retreat. The results indicate that the Laurentide Ice Sheet extended onto the continental shelf.  相似文献   
2.
The deglaciation patterns of the Bergen and Nordfjord-Sunnmøre areas in western Norway are described and correlated. In the Bergen area the coast was first deglaciated at 12,600 B.P., with a succeeding re-advance into the North Sea around 12,200 B.P. Later, during the Allerød, the inland ice retreated at least 50 km, but nearly reached the sea again during the Younger Dryas re-advance, ending at 10,000 B.P. Sunnmøre was ice-free during an interstadial 28,000–38,000 B.P. Later the inland ice reached the sea. The final deglaciation is poorly dated in Sunnmøre, while further south in Nordfjord, it started slightly before 12,300 B.P., followed by a major retreat. No large re-advance of the inland ice occurred during the Younger Dryas. However, in the Sunnmøre-Nordfjord area many local glaciers formed outside the inland ice during the Younger Dryas. Limnic sediments outside one such cirque glacier have been cored and dated, proving that the glacier did not exist at 12,300-11,000 B.P., and that it was formed and disappeared in the time interval 11,000–10,000 B.P. (Younger Dryas). The erosion rate of the cirque glacier was 0.9 mm/year.  相似文献   
3.
Seven localities with fossil-bearing tills were found in the Ålesund area. Fifteen radiocarbon dates of marine shells in the tills all gave ages between 28,000 and 38,000 years B.P. In spite of a general scepticism to shell dates giving high finite ages, these ages may be accepted mainly because of the quality of the shells, the geological situation in which they were found, and identical results for different fractions. The ice-free period is named the Ålesund Interstadial. and its Middle Weichselian age is also suggested by amino acid D/L ratios in shells, compared with Late Weichselian and Eemian ratios. Shell and foraminifera faunas suggest arctic conditions with the Atlantic water present during the optimal period. The tills are non-sorted, compacted and interpreted to be basal tills. Their age is bracketed between c. 28,000 and 12,800 years B.P.  相似文献   
4.
Distinct, clay‐rich beds are common in fjord‐marine deposits in Trondheimsfjorden near the outlet of the Nidelva River. Their characteristic light‐grey colour makes the beds easily distinguishable from the surrounding brownish, bioturbated, muddy fjord sediments. The clay‐rich beds commonly display a clear stratification in clay, silt and very fine sand. The beds are interpreted as originating primarily from large quick‐clay landslides upstream along the Nidelva River. Such events resulted in a sudden increase in the supply of fines to the fjord from disintegrating landslide debris and heavily loaded effluent plumes, possibly favouring hyperpycnal flow. Typical beds can be divided into a clay‐rich lower section, reflecting an initial surge with high concentrations of suspended mud, and a sandier upper section reflecting pulses of higher energy. This development can be explained, for example, by a lowering in the supply of mud, an increasing activity of deltaic sediment gravity flows due to a higher availability of sandy sediments in the landslide‐affected river, and by flooding and/or breaching of landslide dams. The typical, stratified beds are interpreted as the result of one quick‐clay landslide, whereas exceptionally thick, less organized, stratified beds are possibly the result of several large and/or complex landslides. Radiocarbon dating of mollusc shells has helped to establish a chronology for major terrestrial landslides in the area. The frequency of landslides increases towards the end of the Holocene. This is explained by a progressively deeper incision of rivers during glacioisostatic rebound, possibly combined with a change to a wetter climate. The marine core record displays deformation structures and hiati representing submarine mass‐wasting events, and supports the evidence that the clay‐rich beds are weak layers in the fjord‐marine stratigraphy. The inherent weakness of these layers may be explained by their composition, immature texture, loose fabric and contrasting permeabilities in the deposits. Slide‐prone layers similar to the clay‐rich beds described here may be found in other comparable fjord‐marginal settings and are considered to be of importance for geohazard assessments.  相似文献   
5.
At approximately 9200 BP the Romerike area of southeastern Norway was flooded as much as c. 35 m by a jøkulhlaup from the ice-dammed lake 'Nedre Gl'amsjø'. The flood formed characteristic erosion patterns in the surface of soft sediments and eroded channels in overflow passes. Icebergs driven by the floodwater scoured the bottom and formed imprints on the flooded surface when they were stranded as the waterlevel fell. Information from the eroison features is used to reconstruct the palaeocurrents.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号