首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2005年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Sikhote-Alin and Sakhalin are located in the Russian Far Eastflank of the northernmost part of the Sea of Japan. Magmatismin this region preceded, was concurrent with, and continuedafter the extension and sea-floor spreading (25–18 Ma)that formed the Sea of Japan. Among the Sikhote-Alin and Sakhalinvolcanic suites, Eocene–Oligocene (55–24 Ma) lavasare characterized by greater large ion lithophile element andrare earth element enrichments compared with Early–Mid-Miocene(23–15 Ma) tholeiites, and also show a depletion in highfield strength elements (HFSE). The geochemical characteristicsof the Eocene–Oligocene and Early–Mid-Miocene basaltsare consistent with migration of the locus of magma generationbeneath the Sikhote-Alin and Sakhalin areas from subduction-modifiedlithospheric mantle into mid-ocean ridge basalt (MORB)-sourceasthenosphere as spreading in the Sea of Japan progressed. Mid-Miocene–Pliocene(14–5 Ma) lavas, erupted following the opening of theSea of Japan, include alkaline and sub-alkaline basalts withwide ranges in trace-element abundances, varying between twodistinct end-members: (1) volumetrically minor alkaline basaltswith Zr–Nb and Sr–Nb–Pb isotope compositionssimilar to asthenosphere-derived, intra-plate–hotspotbasalts from eastern China; (2) more abundant, lithosphere-derived,low-alkali tholeiites depleted in HFSE. The similarity of isotopicsignatures coupled with systematically different rare earthelement (REE) abundances in the Mid-Miocene–Pliocene andChinese basalts are best modeled by similar extents of meltingof spinel lherzolite and garnet lherzolite, respectively. TheMid-Miocene–Pliocene alkali basalts were generated bysmall degrees of partial melting of hot asthenosphere beneatha thin lithospheric lid; the thin lithospheric mantle beneaththe Sikhote-Alin and Sakhalin region resulted from heating andextension associated with the opening of the Sea of Japan. KEY WORDS: north-eastern Eurasian margin; Sikhote-Alin–Sakhalin; Japan Sea opening; subcontinental lithosphere; asthenosphere  相似文献   
2.
The Susunai Complex of southeast Sakhalin represents a subduction-related accretionary complex of pelitic and basic rocks. Two stages of metamorphism are recognized: (1) a local, low- P / T  event characterized by Si-poor calcic amphiboles; (2) a regional, high- P / T  event characterized by pumpellyite, actinolite, epidote, sodic amphibole, sodic pyroxene, stilpnomelane and aragonite. The major mineral assemblages of the high- P / T  Susunai metabasites contain pumpellyite+epidote+actinolite+chlorite, epidote+actinolite+chlorite, epidote+Na-amphibole+Na-pyroxene+chlorite+haematite. The Na- amphibole is commonly magnesioriebeckite. The Na-pyroxene is jadeite-poor aegirine to aegirine-augite. Application of empirically and experimentally based thermobarometers suggests peak conditions of T  =250–300 °C, P= 4.7–6 kbar. Textural relationships in Susunai metabasite samples and a petrogenetic grid calculated for the Fe3+-rich basaltic system suggest that pressure and temperature increased during prograde metamorphism.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号