首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
地球物理   1篇
地质学   23篇
海洋学   4篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2010年   4篇
  2007年   1篇
  2006年   2篇
  2000年   1篇
  1997年   1篇
排序方式: 共有28条查询结果,搜索用时 328 毫秒
1.
The results of 230Th/U dating and mineralogical–geochemical studies of sulfide ores from the Irinovskoe hydrothermal field and the Severo-Zapadnoe ore occurrence (Mid-Atlantic Ridge) are presented. Sulfides are represented primarily by copper–sulfide ores with 12–30% Cu content; sulfur- and zinc-sulfide ores are distributed less frequently. The analysis of a change in the composition of sulfides over time has made it possible to identify three stages of formation. Each stage assumes that mineral associations are changed from high-temperature (sulfur and copper sulfide) to medium temperature (Zn–Cu and Zn-sulfide) sulfide ores. The whole age range of formation of the hydrothermal deposits falls within the time interval of about 58000–8000 for the Irinovskoe field and 69000–11000 years ago for the Severo-Zapadnoe ore occurrence.  相似文献   
2.
Nodular monazite occurs in metamorphic rocks worldwide and has zonal REE patterns. This paper focuses on the composition of nodular monazite hosted by Permian black shales of the Kular Ridge in the Kular-Nera terrane. This monazite variety (called kularite in the Russian literature) reaches commercial amounts in placers of the area. The contents of Ce, Nd, and La in the analyzed monazite nodules show correlations at Ce/Nd = 14.39La + 0.0919 (in apfu) and Ce/Nd = 0.2318La + 0.1135 (in wt.%) and vary regularly from core to rim. All monazite compositions fall on this trend, but specific grains may plot in its different parts. Thermodynamic calculations indicate that monazite forms via an intermediate precursor (LnPO4·2H2O). The Ce:La:Nd changes in different grains record Eh-pH variations during nucleation and a gradual temperature increase during subsequent growth. The Ce:La:Nd ratio changes partly in grain rims as a result of oxidative dissolution. Judging by the tectonic setting, REE came to the Kular-Nera rocks from the weathered Tomtor Nb-REE deposit, being transported by the Paleo-Khatanga River with monazite nanoparticles bound to the surface of clay minerals.  相似文献   
3.
Doklady Earth Sciences - Data indicating the important role of microorganisms in the redistribution of REEs in the weathering crust and the decisive role in the concentration of REEs during the...  相似文献   
4.
5.
Two new major hydrothermal fields have been discovered in the rift valley of the MAR at 13°N (Ashadze) and l6°38′N (Krasnov). The Ashadze field consists of a cluster of active hydrothermal sites associated with ultramafic rocks and located at the greatest depth in the ocean (4,200 m). By contrast, the Krasnov field consists of inactive sulfide mounds hosted in basalts. The Krasnov is the largest hydrothermal deposit on the MAR (17.4 Mt) so far discovered with iron sulfide as the principal mineral type. By contrast, Cu-Zn sulfides are the major minerals in the Ashadze deposits, which are also enriched in gold and several other metals.  相似文献   
6.
An approximate biogenic contribution of minor elements to sapropel of Lake Kirek in West Siberia is estimated using the “model of direct inheritance” of their composition in plankton by OM of bottom sediments (Yudovich and Ketris, 1990). It is shown that the lifetime accumulation of P, Br, and Zn in copepod zooplankton of Lake Kirek notably affects the concentration of these elements in sapropelic mud (biogenic contribution is approximately 95–53%). The biogenic share of other elements in these sediments is substantially lower: approximately 30% for Sr and Ba; 26–16% for Ca, Pb, Cd, Cu, K, Mg, and Cr; and no more than 5% for As, Co, Fe, Ni, Ti, Y, and Mo.  相似文献   
7.
Here we report on the different sampling strategies for almost seven years of sampling rocks/sediments for the determination of As within the Intermediate Aquifer System (IAS) and upper Floridan Aquifer System (FAS), a very large and productive limestone aquifer spanning from Georgia into Florida. In the FAS, As contamination has become a recurring problem during aquifer storage and recovery (ASR), particularly in central and south Florida.To investigate these phenomena, samples from solid drill cores and rock cuttings were collected from the Hawthorn Group, Suwannee Limestone, Ocala Limestone and Avon Park Formation. Samples were taken along drill cores and rock cuttings (referred to as ‘interval’ samples) or from particular drill core sections and rock cuttings (referred to as ‘targeted’ samples) likely to contain elevated concentrations of As as indicated by the presence of pyrite, hydrous ferric oxide, organic matter, clay minerals, fracture surfaces, and high permeable (moldic) zones.Arsenic was present in all of the stratigraphic units at low concentrations, close to the global average for As in limestone of 2.6 mg/kg. The highest As concentration was 69 mg/kg. In all units, however, the average bulk As concentration in the targeted samples was substantially higher than that in the interval samples. Based on direct spot measurements by electron microprobe and indirect calculations, pyrite was identified as the main source of As in the FAS. Concentrations in pyrite ranged from less than 100 mg/kg to more than 11,000 mg/kg. Because pyrite is heterogeneously distributed, both vertically and horizontally in the sampled stratigraphic units, the same was observed for the distribution of As. However, As concentrations generally decreased with depth, i.e., highest As values in the Hawthorn Group and lowest As values in the Ocala Limestone and Avon Park Formation. Compared to pyrite, other trace minerals contained much less As.The average As concentrations of the two types of sample media (solid cores and rock cuttings) were quite similar. These results indicate that if simply the average bulk rock As concentration of a geologic unit is the desired outcome of an investigation, either interval or targeted sampling of rock cuttings, seems to be sufficient. This is particularly important when time and money are a factor. This approach could work equally well for any other trace element. Structural sedimentary information, such as fractures, etc., is likely lost, however, when sampling rock cuttings. Thus, if this information is required, solid core samples need to be collected by hollow core diamond drilling.  相似文献   
8.
Doklady Earth Sciences - As a result of comprehensive study and laser 40Ar/39Ar dating of sanidines from the rocks of the Talakhtakh diatreme (TD) (Arctic Siberia), it has been found that the...  相似文献   
9.
Doklady Earth Sciences - Among the rich REE–Nb ores of the upper ore horizon of the Tomtor deposit, under the Jurassic deposits (borehole 324, interval 47–62 m), ultrapotassiс...  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号