首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   4篇
天文学   1篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 125 毫秒
1
1.
Serpentine soils derived from the weathering of ultramafic rocks and their metamorphic derivatives (serpentinites) are chemically prohibitive for vegetative growth. Evaluating how serpentine vegetation is able to persist under these chemical conditions is difficult to ascertain due to the numerous factors (climate, relief, time, water availability, etc.) controlling and affecting plant growth. Here, the uptake, incorporation, and distribution of a wide variety of elements into the biomass of serpentine vegetation has been investigated relative to vegetation growing on an adjacent chert-derived soil. Soil pH, electrical conductivity, organic C, total N, soil extractable elements, total soil elemental compositions and plant digestions in conjunction with spider diagrams are utilized to determine the chemical relationships of these soil and plant systems. Plant available Mg and Ca in serpentine soils exceed values assessed in chert soils. Magnesium is nearly 3 times more abundant than Ca in the serpentine soils; however, the serpentine soils are not Ca deficient with Ca concentrations as high as 2235 mg kg−1. Calcium to Mg ratios (Ca:Mg) in both serpentine and chert vegetation are greater than one in both below and above ground tissues. Soil and plant chemistry analyses support that Ca is not a limiting factor for plant growth and that serpentine vegetation is actively moderating Mg uptake as well as tolerating elevated concentrations of bioavailable Mg. Additionally, results demonstrate that serpentine vegetation suppresses the uptake of Fe, Cr, Ni, Mn and Co into its biomass. The suppressed uptake of these metals mainly occurs in the plants’ roots as evident by the comparatively lower metal concentrations present in above ground tissues (twigs, leaves and shoots). This research supports earlier studies that have suggested that ion uptake discrimination and ion suppression in the roots are major mechanisms for serpentine vegetation to tolerate the chemistry of serpentine soils.  相似文献   
2.
Mineralogy and Petrology - The Berlins Porphyry located on the South Island of New Zealand provides an opportunity to examine iron concretions formed in a subterranean system. Specifically, an...  相似文献   
3.
Vulnerability of laptop computers to volcanic ash and gas   总被引:1,自引:0,他引:1  
Laptop computers are vital components of critical infrastructure sectors and a common tool in broader society. As they become more widely used, their exposure to volcanic hazards will increase. Therefore, understanding how laptops will function in volcanic environments is necessary to provide suitable mitigation options. In this study, laptop computers were subjected to volcanic ash and gas in both laboratory and field settings. None of the laptops sustained permanent damage in laboratory experiments; however, ash contamination did reduce the functionality of keyboards, CD drives, and cooling fans. Several laptops shut down temporarily due to overheating following ash contamination. In field experiments, laptops were exposed to high concentrations of volcanic gases at White Island, New Zealand. These laptops did not sustain permanent damage as only a small amount of gas was able to enter the laptops. However, metal components on the outside of the laptop did sustain minor corrosion. Re-examination of the laptops after 6?months indicated they were in full working order. Printed circuit boards suffered significant corrosion damage and ceased working only when in direct and sustained contact with volcanic gases. Simple mitigation techniques such as isolating laptops inside heavy duty polyethylene bags were effective. Overall, our experiments demonstrate that laptops have a relatively low risk of damage from volcanic ash and gas exposure, but have a low-medium risk of loss of functionality in ash environments. We think this has implications for other electronic equipment used extensively in critical infrastructure services.  相似文献   
4.
Christopher Oze  Mukul Sharma 《Icarus》2007,186(2):557-561
The near-surface inorganic synthesis of molecular hydrogen (H2) is a fundamental process relevant to the origins and to the sustenance of early life on Earth and potentially other planets. Hydrogen production through the decomposition of water is thought to be a principal reaction that occurs during hydrothermal alteration of olivine, an iron-magnesium silicate abundant near planetary surfaces. We demonstrate that copious amounts of H2 are produced only when the olivine undergoing alteration (serpentinization) contains 1 to 50 mol% iron over a variety of planetary surface P-T conditions. This suggests that extrasolar Earth-like planets that are hosted by a star with iron contents up to two times the solar value could support life provided they are hydrothermally active and fall within the habitable zone around the star.  相似文献   
5.
Metal roofing material is commonly used for residential and industrial roofs in volcanically active areas. Increased corrosion of metal roofing from chemically reactive volcanic ash following ash deposition post-eruption is a major concern due to decreasing the function and stability of roofs. Currently, assessment of ash-induced corrosion is anecdotal, and quantitative data are lacking. Here, we systematically evaluate the corrosive effects of volcanic ash, specifically ash leachates, on a variety of metal roofing materials (i.e. weathered steel, zinc, galvanized steel, and Colorsteel©) utilizing weathering chamber experiments and direct acid treatments. Weathering chamber tests were carried out for up to 30 days, and visual, chemical, and surface analyses did not definitively identify significant corrosion in any of the test roofing metal samples. Direct concentrated acid treatments with hydrochloric (HCl), sulphuric (H2SO4), and hydrofluoric (HF) acids demonstrate that roofing materials are chemically resilient. Our experimental results suggest that ash-leachate-related corrosion is a longer-term process (>1 month), potentially related to a multitude of factors including increased ash leachate concentrations, the dissolution of the glass matrix of the ash, moisture retention at the ash-surface boundary, and potential reactions involving photo-oxidation. Overall, corrosion is not a simple process related to the short-term release of acid and/or salt leachates from the ash surface, but a product of dynamic interactions involving ash and water at the surface of metal roofing material for extended periods.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号