首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
地球物理   24篇
地质学   3篇
海洋学   1篇
天文学   4篇
  2022年   3篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
排序方式: 共有32条查询结果,搜索用时 17 毫秒
1.
Natural Hazards - Large-scale wildfires and windstorms are the most important disturbance agents for the Russian boreal forests. The paper presents an assessment of fire-related and wind-induced...  相似文献   
2.
Regularities in variations in the intensity of hydroxyl radiation (the (6–2) λ834.4-nm band) and the Atmospheric system of molecular oxygen (the A(0–1) λ864.5-nm band) of the mesopause, hydroxyl temperature, and its night variability during sudden winter warmings of the stratosphere have been obtained based on long-term observations in Zvenigorod.  相似文献   
3.
4.
The seasonal dependences of the response of the hydroxyl ((6–2) band) and molecular oxygen O2(b 1Σ g + ) ((0–1) band) emission intensities, temperature, and density indicator in the region of the hydroxyl emission maximum (87 km) to solar activity have been obtained based on the spectral observations of the mesopause emissions at Zvenigorod observatory during 2000–2007. The ratio of the OH (7–3) and (9–4) band intensities, characterizing the behavior of the vibrational temperature, has been used as an indicator of density. It has been established that the response of the studied mesopause characteristics to solar activity is positive in all seasons. In winter the response is maximal in the intensities and temperature and is minimal in the density indicator. The main mechanisms by which solar activity affects the mesopause characteristics have been considered. The behavior of the internal gravity waves with periods of 0.33–7 h depending on solar activity has been studied. It has been noted that these waves become more active at a minimum of the 11-year solar cycle.  相似文献   
5.
The results of rocket and satellite measurements available in the literature of 5.3-μm nitric oxide emission in the upper atmosphere have been systematized and analyzed. Analytical dependences describing the height distribution of volumetric intensity of 5.3-μm emission of the NO molecule and its variations in a range of heights from 100 to 130 km as a function of the time of year, day, latitude, and solar activity have been obtained.  相似文献   
6.
The results of rocket and satellite measurements of carbon dioxide emissions at a wavelength of 15 μm in the upper atmosphere have been systematized and analyzed. Analytical expressions describing the dependence of the altitude distribution of 15-μm CO2 emission intensity and its variation in the altitude range from 100 to 130 km on the season, latitude, and solar activity have been obtained.  相似文献   
7.
The empirical approximations of variations in the rotational temperature of the emission of the molecular oxygen Atmospheric system, obtained based on the systematization of the long-term ground-based observations under different heliogeophysical conditions, are presented.  相似文献   
8.
The data on regular variations in the emission intensity of the molecular oxygen Atmospheric system excited in the region of the lower thermosphere have been systematized based on the long-term studies. The empirical approximations of the emission behavior are presented.  相似文献   
9.
On the basis of measurements of the intensity of 1.58-μm emissions of the Infrared Atmospheric System of molecular oxygen (IRAO2) conducted at the Zvenigorod scientific station of the Institute of Atmospheric Physics of the Russian Academy of Sciences (φ = 55.7°N, λ = 36.8°E), seasonal variations are estimated for various solar zenith angles. Their amplitude has the maximum value at the solar zenith angles χ S ∼ 105–110°. It decreases at χ S ∼ 125–130° and tends to zero at χ S ∼ 80–85°. The comparison of currently measured values of the 1.58-μm emission intensity of the Infrared Atmospheric System of molecular oxygen with published data on the intensity of this emission obtained in 1961–1966 reveals their decrease over approximately 50 years. This fact is in good agreement with similar behavior of the emission intensity of atomic oxygen (557.7 nm) over the period considered.  相似文献   
10.
Geomagnetism and Aeronomy - Spectral observations of the mesopause airglow at the Zvenigorod Scientific Station have been used to obtain the midnight emission intensities of molecular oxygen...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号