首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   7篇
  2022年   1篇
  2018年   1篇
  2014年   1篇
  2012年   1篇
  2009年   2篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
International Journal of Earth Sciences - The Polish Lowlands, located southwest of the Teisseyre–Tornquist Zone, within Trans-European Suture Zone, were affected by bimodal, but dominantly...  相似文献   
2.
To discriminate possible anthropogenic and lithogenic sources of Pb in Lower Silesia (SW Poland), the Pb isotope composition was investigated in a spectrum of rocks and anthropogenic materials as well as within 10 soil profiles. Silicate rocks in Lower Silesia have 206Pb/207Pb ratios that vary from 1.17 for serpentinites to 1.38 for gneisses, and this variability is reflected in the isotope composition of the mineral soil horizons. The Pb isotope composition of coals, ores and anthropogenic materials (slags and fly ashes) is rather uniform, with 206Pb/207Pb ratios ranging from 1.17 to 1.18. Similar ratios were observed in ore and coal samples from Upper Silesia. The O soil horizons also have uniform 206Pb/207Pb ratios of 1.17–1.18 and the heterogeneity of the 206Pb/207Pb ratios increases with depth in the soil profiles. Five soils, with varying Pb concentrations, analysed far from contamination centres, show consistent, approximately 2-fold enrichment in Pb concentration from the C to A horizons, which is consistent with natural re-distribution of Pb within the profiles. The increase in the Pb concentration is accompanied by a decrease in 206Pb/207Pb ratios, also attributed to natural Pb isotope fractionation. Four soil profiles from industrial areas show variable enrichments in Pb concentrations and these are attributed to anthropogenic input from air-borne pollutants or even slag particles at smelting sites. The implication is that a lithogenic Pb source can deviate from the basement rock composition, and detailed isotope characteristics of the geological background and natural enrichments in soils are often needed to determine the lithogenic/anthropogenic proportions of Pb in soils.  相似文献   
3.
Dioritic and granodioritic rocks coexist in the Gęsiniec Intrusion in SW Poland showing typical relationships in many mafic–felsic mingling zones worldwide, such as dioritic syn-putonic dykes and microgranular enclaves within granodioritic host. Plagioclase zonation from granodioritic rocks suggests late stage mixing probably with dioritic magma, whereas no magma mixing is recorded in plagioclase from dioritic rocks. The diorites seem to show effects of interaction with evolved, leucocratic melts derived from granodiorite, not with the granodioritic melt itself. We conclude that the diorites’ compositions were modified after their emplacement within the granodioritic host, when the diorites were essentially solidified and injection of evolved melt from granodiorite did not involve marked modification of plagioclase composition. Compositional zoning patterns of plagioclase in diorites can be modeled by closed system fractional crystallization interrupted by resorption induced probably by decompression. Granodioritic plagioclase seems to be affected by the same resorption event. Plagioclase that crystallized in dioritic magma before the resorption does not record interaction between dioritic and granodioritic magmas, suggesting that both magmas evolved separately. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
4.
Apatite is a versatile mineral crystallizing at different stages of silicic magma evolution. Its composition may record that of magma, but could also be affected by interaction with fluids. The focus of this study is the well-recognized magma mingling process that was previously detected using plagioclase composition and in this study complementary record is sought in apatite. The apatite was analysed in two dioritic enclaves (primitive and hybrid) and host quartz monzonite, which is an igneous rock emplaced at ca. 340 Ma in mylonitized Góry Sowie gneisses (NE Bohemian Massif). The apatite was analysed in-situ by microprobe that allowed for chemical characterization of different apatite populations in quartz monzonite and analyses of thin acicular apatite in the enclaves. Apatite population in the quartz monzonite was chemically distinct from that in both enclave types and characterized by higher Y and lower Ce contents, such values are usually typical for peraluminous magmas. As such, the apatite transfer from felsic to mafic magma should be well recorded in apatite composition, which was not the case. Monzonite apatite composition was not commonly observed in the hybrid enclave despite massive plagioclase transfer and only rare resorbed cores with low Ce and Y contents were present. However, such low Ce and Y cores crystalized at the latest stage of apatite crystallization in the quartz monzonite, whereas the plagioclase transfer was an early episode. Therefore, we conclude that apatite transfer was limited during mingling and the apatite composition in the quartz monzonite is best explained by an early Cl-Ce-rich fluid removal and then fractional crystallization, while apatite in the primitive enclave is affected only by fractional crystallization. Altogether, Ce and Y composition of apatite is a valuable tool to record diverse magmatic processes such as fluid removal and precipitation from fluid in addition to fractionation of different REE phases and should be further explored.  相似文献   
5.
Granodiorite from the Gęsiniec Intrusion, Strzelin Crystalline Massif, SW Poland contains complexly zoned plagioclases. Five chemically and structurally distinct zones can be correlated among crystals: ‘cores’ (25–35% An), inner mantles (40–45% An), outer mantles (40–25% An), resorption zones (35–50% An) and rims (35–30% An). Good structural and chemical (major and trace elements) correlation of zones between crystals indicates that zonation was produced by changes in conditions of crystallization on a magma chamber scale. Plagioclase, being the liquidus phase, records a time span from the beginning of crystallization to emplacement and rapid cooling of granodiorite as thin dykes.

Crystallization began with the formation of inner mantles. The paucity and different sizes of inner mantles suggests slow crystallization in high temperature magma. Normally zoned inner mantles were formed under increasing undercooling. Compositional trends in mantles suggest closed system crystallization.

The major resorption zones were caused by injection of less evolved magma as indicated by the strontium increase in plagioclase. The injection triggered a rapid rise of magma and plagioclase crystals facilitating mixing but also inducing fast, kinetically controlled growth of complex multiple, oscillatory zonation within resorption zones. The ascent of magma caused decompression melting of plagioclase and produced melt inclusions within inner mantles—the ‘cores’. The decompression range is estimated at a minimum of 2 kbar. Emplacement of granodiorite as thin dykes allow rapid cooling and preservation of magmatic zonation in plagioclases. Melt inclusions crystallized completely during post-magmatic cooling.

The zonation styles of plutonic plagioclase differ markedly from volcanic ones suggesting different magma evolution. Zones in plutonic plagioclase are well correlated indicating crystallization in quiescent magma where crystals accumulation and compositional magma stratification may occur. Crystals probably did not travel between different regimes. Resorption occurred but as single albeit complex episodes. Good correlation of zones in plutonic plagioclases allows a distinction between the main processes controlling zonation and superimposed kinetic effects.  相似文献   

6.
Crystallization experiments were performed on quartz diorite (~55 wt.% SiO2, 3.1–8.4 wt.% MgO) from the G?siniec Intrusion (Bohemian Massif, SW Poland) at 1?2 kbar, 750–850°C, various mole fractions of water and with fO2 buffered by the NNO buffer. The two natural quartz diorites (leucocratic poikilitic quartz diorite - ‘LPD’ and melanocratic quartz diorite - ‘MD’) differ in whole rock and mineral composition with MD being richer in MgO and poorer in CaO than LPD, probably due to accumulation of mafic minerals or melt removal in MD. LPD represents melt composition and is used to reconstruct crystallization conditions in the G?siniec Intrusion. The crystallization history of LPD magma, deduced from experimental and natural mineral compositions, includes a higher pressure stage probably followed by emplacement at ~2 kbar of partly crystallized magma at temperatures ~850?800°C and quick cooling. The mineral assemblage present in LPD requires water contents in the magma of at least 5 wt% and oxygen fugacity below that controlled by the NNO buffer. The compositions of mafic minerals in the MD composition were equilibrated at temperatures below 775°C and at subsolidus conditions. The equilibration was probably due to the reaction between water-rich, oxidizing residual melt and the cumulatic-restitic mineral assemblage. MD is characterized by occurrence of the euhedral cummingtonite and increasing anorthite content in the rims of plagioclase. A similar reaction was reproduced experimentally in both LPD and MD compositions indicating that cummingtonite may be a late magmatic phase in quartz dioritic systems, crystallizing very close to solidus and only from water saturated magma.  相似文献   
7.
Chemical and structural zoning in plagioclase can develop in response to a number of different magmatic processes. We examine plagioclase zonation formed during the transfer of plagioclase from a granodioritic host to a monzodioritic enclave to understand the development of different zonation patterns caused by this relatively simple magma mixing process. The transferred plagioclase records two stages of evolution: crystallization of oscillatory plagioclase in the host granodioritic magma and crystallization of high An zones and low An rims in the hybrid enclave magma. High An zones (up to An72) are formed only in the hybrid enclaves after plagioclase transfer. Plagioclase from a primitive enclave, showing no or only minimal interaction with the host, is An30–43. The implication is that high An zones crystallize only from the hybrid magma and not from the primitive one, probably because of an increase in water content in the hybrid magma. Complex interactions between the two magmas are also recorded in Sr content in plagioclase, which indicates an initial increase in Sr concentration in the melt upon transfer. This is contrary to what is expected from the mixing of low Sr enclave magma with a high Sr granodiorite one. Such Sr distribution in the plagioclase implies that the transfer of the plagioclase took place before the onset of plagioclase crystallization in the enclave magma. Therefore, the mixing between high Sr granodiorite magma and low Sr enclave magma was recorded only in plagioclase rims and not in the high An zones.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号