首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
地质学   1篇
综合类   1篇
  2020年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The present study aimed at assessing the antifouling activity of bacteria associated with marine sponges. A total of eight bacterial strains were isolated from the surface of sponge Sigmadocia sp., of them, SS02, SS05 and SS06 showed inhibitory activity against biofilm-forming bacteria. The extracts of these 3 strains considerably affected the extracellular polymeric substance producing ability and adhesion of biofilm-forming bacterial strains. In addition to disc diffusion assay, microalgal settlement assay was carried out with the extracts mixed with polyurethane wood polish and coated onto stainless steel coupons. The extract of strain SS05 showed strong microalgal settlement inhibitory activity. Strain SS05 was identified as Bacillus cereus based on its 16S rRNA gene. Metabolites of the bacterial strains associated with marine invertebrates promise to be developed into environment-friendly antifouling agents.  相似文献   
2.

Prediction and control of blast-induced ground vibration is a matter of concern in mining industry since long. Several approaches ranging from scaled distance regression, different numerical methods to wave superimposition theories have been tried by many researchers for better prediction and control of blast-induced ground vibration. Signature hole analysis is one of the popular simulation methods to predict the ground vibration generated due to production blast. It superimposes the recorded signature hole waveform using a computer program to predict the production blast-induced vibration. The technique inputs the designated time of detonation of each hole and superimposes the waves generated by each hole to predict the nearest value of peak particle velocity and frequency of blast-induced ground vibration. Although a very useful approach, it requires a computer program to simulate the linear superimposition of waveforms. The simulation is not possible for every blast as it takes time and also is difficult for field engineers to simulate every time, whereas it is always easy for blasting engineers to adapt and use an empirical equation/approach for prediction and control of blast-induced ground vibration than simulation. In this paper, an attempt has been made to develop an innovative and simplified analytical approach of signature hole analysis. The simplified sinusoidal wave equation is obtained from recorded signature hole ground vibration waveform properties and is superimposed mathematically according to the multi-hole blast design to predict the production blast-induced ground vibrations. The validation of the developed approach was done in three different sites, and up to 15% more accuracy in prediction of the blast, vibrations are achieved in comparison with signature hole analysis prediction.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号