首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地球物理   3篇
地质学   7篇
  2020年   1篇
  2019年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2002年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Large agricultural areas reclaimed in the past century, south of the Venice Lagoon, have experienced significant land subsidence due to oxidation of peat organic soils. This has exposed the region to flood hazard particularly during severe storms and has contributed to increase the marginal management cost of the infrastructures (ditches, levees, pumping stations) designed to operate the drainage system. Direct measurements and indirect evidence from the channel network suggest a land settlement between 1.5 and 2 m over the past 70 years. This paper provides an overview of the problem with important information on its most recent evolution.  相似文献   
2.
3.
A time-splitting approach for advection–dispersion equations is considered. The dispersive and advective fluxes are split into two separate partial differential equations (PDEs), one containing the dispersive term and the other one the advective term. On triangular elements a triangle-based high resolution Finite Volume (FV) scheme for advection is combined with a Mixed Hybrid Finite Element (MHFE) technique to solve dispersion. This approach introduces an error proportional to the time step and the overall scheme is only first order accurate if special care is not taken in the definition of the numerical flux approximation for advection. By incorporating the diffusive effects into the definition of this numerical flux, near second order accuracy (up to a logh factor) can be proved theoretically and validated by numerical experiments in both one- and two-dimensional cases.  相似文献   
4.
Problems in hydrology and water management that involve both surface water and groundwater are best addressed with simulation models that can represent the interactions between these two flow regimes. In the current generation of coupled models, a variety of approaches is used to resolve surface–subsurface interactions and other key processes such as surface flow propagation. In this study we compare two physics-based numerical models that use a 3D Richards equation representation of subsurface flow. In one model, surface flow is represented by a fully 2D kinematic approximation to the Saint–Venant equations with a sheet flow conceptualization. In the second model, surface routing is performed via a quasi-2D diffusive formulation and surface runoff follows a rill flow conceptualization. The coupling between the land surface and the subsurface is handled via an explicit exchange term resolved by continuity principles in the first model (a fully-coupled approach) and by special treatment of atmospheric boundary conditions in the second (a sequential approach). Despite the significant differences in formulation between the two models, we found them to be in good agreement for the simulation experiments conducted. In these numerical tests, on a sloping plane and a tilted V-catchment, we examined saturation excess and infiltration excess runoff production under homogeneous and heterogeneous conditions, the dynamics of the return flow process, the differences in hydrologic response under rill flow and sheet flow parameterizations, and the effects of factors such as grid discretization, time step size, and slope angle. Low sensitivity to vertical discretization and time step size was found for the two models under saturation excess and homogeneous conditions. Larger sensitivity and differences in response were observed under infiltration excess and heterogeneous conditions, due to the different coupling approaches and spatial discretization schemes used in the two models. For these cases, the sensitivity to vertical and temporal resolution was greatest for processes such as reinfiltration and ponding, although the differences between the hydrographs of the two models decreased as mesh and step size were progressively refined. In return flow behavior, the models are in general agreement, with the largest discrepancies, during the recession phase, attributable to the different parameterizations of diffusion in the surface water propagation schemes. Our results also show that under equivalent parameterizations, the rill and sheet flow conceptualizations used in the two models produce very similar responses in terms of hydrograph shape and flow depth distribution.  相似文献   
5.
Natural Hazards - Ground motion intensity due to an earthquake changes as it disseminates through the soil media from bedrock to the surface. As the ground motion intensity and damage levels mainly...  相似文献   
6.
A peat deposit (Zennare basin, Venice coastland, Italy) was monitored in previous field studies to investigate the hydrological response of organic soil to meteorological dynamics. Field tests and modelling predictions highlighted the risk of the complete loss of this peat layer during the next 50 years, due to oxidation enhanced by the increased frequency of warmer periods. Unfortunately, despite the considerable impacts that are expected to affect peat bogs (in this area and worldwide), only a few experimental studies have been carried out to assess the hydrologic response of peat to severe water scarcity. Because of that, an undisturbed 0.7 m3 peat monolith was collected, transferred to the laboratory and instrumented. The total weight (representative of the water content dynamics of the peat monolith as a whole), and two vertical profiles of matric potentials and water content were monitored in controlled water-scarce conditions. After an extended air-drying period, the monolith was used as an undisturbed peat lysimeter and a complete cycle of wetting and drainage was performed. Supplementary measurements of matric potential ψ and water content θ were collected by testing peat subsamples on a suction table apparatus. A set of water retention curves was determined in a range of matric potentials broader (ψ down to −7 m) than the current natural conditions in the field (minimum ψ = −1 m). While water content at saturation showed values similar to those in the original natural conditions (θ ≅ 0.8), a remarkable loss of water holding capacity (even for low potentials) has been highlighted, especially in deep layers that are now permanently below the water table. The retention curves changed shape and values, with a more pronounced hysteresis visible in an increasing distance between wetting and drying data. Hydraulic non-equilibrium between the water content and water potential could be a possible cause and it is worth modelling in future studies. The parameters of the van Genuchten retention curves were obtained for the wetting and the drying phases.  相似文献   
7.
We present a methodology conducive to the application of a Galerkin model order reduction technique, Proper Orthogonal Decomposition (POD), to solve a groundwater flow problem driven by spatially distributed stochastic forcing terms. Typical applications of POD to reducing time-dependent deterministic partial differential equations (PDEs) involve solving the governing PDE at some observation times (termed snapshots), which are then used in the order reduction of the problem. Here, the application of POD to solve the stochastic flow problem relies on selecting the snapshots in the probability space of the random quantity of interest. This allows casting a standard Monte Carlo (MC) solution of the groundwater flow field into a Reduced Order Monte Carlo (ROMC) framework. We explore the robustness of the ROMC methodology by way of a set of numerical examples involving two-dimensional steady-state groundwater flow taking place within an aquifer of uniform hydraulic properties and subject to a randomly distributed recharge. We analyze the impact of (i) the number of snapshots selected from the hydraulic heads probability space, (ii) the associated number of principal components, and (iii) the key geostatistical parameters describing the heterogeneity of the distributed recharge on the performance of the method. We find that our ROMC scheme can improve significantly the computational efficiency of a standard MC framework while keeping the same degree of accuracy in providing the leading statistical moments (i.e. mean and covariance) as well as the sample probability density of the state variable of interest.  相似文献   
8.
A three-dimensional (3D) groundwater flow model of the deep multi-aquifer Quaternary deposits of the Po plain sedimentary basin, within a 3,300-km2 area (Veneto, Italy), is developed, tested and applied to aid sustainable large-scale water-resources management. Integrated mathematical modelling proves significantly successful, owing to an unusual wealth of available geological, geophysical, and hydrologic data and to state-of-the-art numerical tools. Of particular interest is the evaluation of the influence of alternative conceptual models; that is, of reconstructed representations of the 3D geological model of the structure of the aquifers. The reference conceptual model is set up by means of extended geological sections and stratigraphic records, and is used to create a large, unstructured 3D finite element grid. By analyzing the effects on piezometric surfaces and on the overall water budget of geometrical perturbations from the reference structure, alternative geo-structural models, obtained by systematically shifting the pinch-out of the aquitards, are compared. Interestingly, the impacts of aquitard pinch-out prove far from negligible. The results suggest the critical importance of reliable geological models even for large, complex 3D models. The good practice of iteratively testing numerically the impact of surprises on the conceptual model, as more field information is collected, is thus supported.  相似文献   
9.
A programme of Venice uplift because of seawater injection into a 600–800 m deep brackish aquifer underlying the lagoon has recently been advanced. As the actual spatial variability of the hydro‐geological parameters is to a large extent unknown, a controversial issue concerns the 25–30 cm heave prediction with the possible generation of differential displacements that might jeopardize the integrity of the architectural patrimony. It is shown that significant differential displacements have occurred in Venice in the past and are still presently occurring as evidenced by SAR interferometry. The results of a stochastic analysis addressing the variability of the hydraulic conductivity of the injected formation indicate that even a highly uneven aquifer expansion does not migrate to ground surface because of the smoothing effect exerted by the overburden. The predicted differential displacements are well below the values Venice is experiencing. Any a priori alarmism appears to be unfounded and unjustified.  相似文献   
10.
We explore the ability of the greedy algorithm to serve as an effective tool for the construction of reduced-order models for the solution of fully saturated groundwater flow in the presence of randomly distributed transmissivities. The use of a reduced model is particularly appealing in the context of numerical Monte Carlo (MC) simulations that are typically performed, e.g., within environmental risk assessment protocols. In this context, model order reduction techniques enable one to construct a surrogate model to reduce the computational burden associated with the solution of the partial differential equation governing the evolution of the system. These techniques approximate the model solution with a linear combination of spatially distributed basis functions calculated from a small set of full model simulations. The number and the spatial behavior of these basis functions determine the computational efficiency of the reduced model and the accuracy of the approximated solution. The greedy algorithm provides a deterministic procedure to select the basis functions and build the reduced-order model. Starting from a single basis function, the algorithm enriches the set of basis functions until the largest error between the full and the reduced model solutions is lower than a predefined tolerance. The comparison between the standard MC and the reduced-order approach is performed through a two-dimensional steady-state groundwater flow scenario in the presence of a uniform (in the mean) hydraulic head gradient. The natural logarithm of the aquifer transmissivity is modeled as a second-order stationary Gaussian random field. The accuracy of the reduced basis model is assessed as a function of the correlation scale and variance of the log-transmissivity. We explore the performance of the reduced model in terms of the number of iterations of the greedy algorithm and selected metrics quantifying the discrepancy between the sample distributions of hydraulic heads computed with the full and the reduced model. Our results show that the reduced model is accurate and is highly efficient in the presence of a small variance and/or a large correlation length of the log-transmissivity field. The flow scenarios associated with large variances and small correlation lengths require an increased number of basis functions to accurately describe the collection of the MC solutions, thus reducing significantly the computational advantages associated with the reduced model.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号