首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
大气科学   2篇
地球物理   3篇
地质学   10篇
天文学   3篇
自然地理   1篇
  2021年   1篇
  2016年   1篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  1982年   1篇
排序方式: 共有19条查询结果,搜索用时 46 毫秒
1.

To cope with water scarcity in drylands, stormwater is often collected in surface basins and subsequently stored in shallow aquifers via infiltration. These stormwater harvesting systems are often accompanied by high evaporation rates and hygiene problems. This is commonly a consequence of low infiltration rates, which are caused by clogging layers that form on top of the soil profile and the presence of a thick vadose zone. The present study aims to develop a conceptual solution to increase groundwater recharge rates in stormwater harvesting systems. The efficiency of vadose-zone wells and infiltration trenches is tested using analytical equations, numerical models, and sensitivity analyses. Dams built in the channel of ephemeral streams (wadis) are selected as a study case to construct the numerical simulations. The modelling demonstrated that vadose-zone wells and infiltration trenches contribute to effective bypassing of the clogging layer. By implementing these solutions, recharge begins 2250–8100% faster than via infiltration from the bed surface of the wadi reservoir. The sensitivity analysis showed that the recharge rates are especially responsive to well length and trench depth. In terms of recharge quantity, the well had the best performance; it can infiltrate up to 1642% more water than the reservoir, and between 336 and 825% more than the trench. Moreover, the well can yield the highest cumulative recharge per dollar and high recharge rates when there are limitations to the available area. The methods investigated here significantly increased recharge rates, providing practical solutions to enhance aquifer water storage in drylands.

  相似文献   
2.
3.
Brazilian agricultural census data at the municipal level are used to develop and map a simple index of staple food versus nonstaple food agriculture for Brazil over time (1996–2006). The results show spatial variation in the direction and degree of the shift toward or away from staple food cropping across Brazil. The index is presented as an important methodological step toward a systematic geographic understanding of crop share changes surrounding food versus fuel and other nonfood crop production.  相似文献   
4.
The rocky coastline of the Sultanate of Oman between Fins and Sur is decorated by a number of large blocks and boulder accumulations forming ramparts. The blocks occur as individual rocks of up to 40 tons, as imbricated sets and as ??boulder trains.?? Landward, the deposits change into a sand/boulder mixture and distal into sands. The coast is made up of Tertiary folded limestones and beach rock of Quaternary age, both also constitute the megaclasts. The transport distance from the fractured seaward platform of 6?C10?m above mean sea level varies between 20?m and more than 50?m. We found individual blocks of recent corals and overturned blocks with attached oysters and rock pools. Terrestrial laser scanning was used to analyze geomorphologic features as well as for volumetric estimates of the block weights. Tropical cyclones such as Gonu in 2007 or Phet in 2010 are known to have affected Oman??s coastline in the past. The coastal changes during recent cyclones were minor; therefore, we interpret the block deposits as tsunamigenic. However, this interpretation is not unambiguous. The most likely source area for a tsunami is seen in the Makran Subduction Zone situated in the northern Indian Ocean. Here, at least 4?C5 tsunamigenic earthquakes are documented.  相似文献   
5.
We present the stratigraphy, lithology, volcanology, and age of the Acahualinca section in Managua, including a famous footprint layer exposed in two museum pits. The ca. 4-m-high walls of the main northern pit (Pit I) expose excellent cross sections of Late Holocene volcaniclastic deposits in northern Managua. We have subdivided the section into six lithostratigraphic units, some of which we correlate to Late Holocene eruptions. Unit I (1.2 m thick), chiefly of hydroclastic origin, begins with the footprint layer. The bulk is dominated by mostly massive basaltic-andesitic tephra layers, interpreted to represent separate pulses of a basically phreatomagmatic eruptive episode. We correlate these deposits based on compositional and stratigraphic evidence to the Masaya Triple Layer erupted at Masaya volcano ca. 2,120 ± 120 a B.P.. The eruption occurred during the dry season. A major erosional channel unconformity up to 1 m deep in the western half of Pit I separates Units II and I. Unit II begins with basal dacitic pumice lapilli up to 10 cm thick overlain by a massive to bedded fine-grained dacitic tuff including a layer of accretionary lapilli and pockets of well-rounded pumice lapilli. Angular nonvesicular glass shards are interpreted to represent hydroclastic fragmentation. The dacitic tephra is correlated unequivocally with the ca. 1.9-ka-Plinian dacitic Chiltepe eruption. Unit III, a lithified basaltic-andesitic deposit up to 50 cm thick and extremely rich in branch molds and excellent leaf impressions, is correlated with the Masaya Tuff erupted ca. 1.8 ka ago. Unit IV, a reworked massive basaltic-andesitic deposit, rich in brown tuff clasts and well bedded and cross bedded in the northwestern corner of Pit I, cuts erosionally down as far as Unit I. A poorly defined, pale brown mass flow deposit up to 1 m thick (Unit V) is overlain by 1–1.5 m of dominantly reworked, chiefly basaltic tephra topped by soil (Unit VI). A major erosional channel carved chiefly between deposition of Units II and I may have existed as a shallow drainage channel even prior to deposition of the footprint layer. The swath of the footprints is oriented NNW, roughly parallel to, and just east of, the axis of the channel. The interpretation of the footprint layer as the initial product of a powerful eruption at Masaya volcano followed without erosional breaks by additional layers of the same eruptive phase is strong evidence that the group of 15 or 16 people tried to escape from an eruption.  相似文献   
6.
A large-scale numerical flow and transport model was developed for the central-eastern arid part of the Arabian Peninsula. The model was applied to a region with freshwater resources dating back to more humid periods of the past, which are faced with overexploitation today. Model inflow was based on infiltration around wadi beds and groundwater recharge. Inflow was balanced by natural outflows, such as evaporation from sabkhas, spring discharge, and discharge to the sea. Two models were developed: (1) a short-term present-day model to estimate effective model parameters, and (2) a long-term model to study the development of the groundwater resources during the Mid- and Late Holocene and the natural response of the groundwater system to changes in climate. Hydraulic model parameters (hydraulic conductivity and specific storage) were assigned with respect to geological structures. Hydraulic parameters were estimated with an inverse PEST model by calibrating against observed depression cones cause by groundwater abstraction. Sensitivity analysis demonstrated that estimated model parameters were associated with a high uncertainty at a certain distance from agricultural areas when calibration data were lacking. A long-term model starting 10,000 years BP was calibrated by spring discharge and palaeo-groundwater levels and validated using measured 14C groundwater ages. The long-model predicted that groundwater levels adapted in response to changes in precipitation. During the Mid-Holocene, which was characterized by an intensification of the monsoon season, groundwater levels increased by 10 m on the mainland within the shallow aquifers and adapted quickly to higher recharge rates. The deeper aquifers were less affected by changes in climate. Along the present-day coastline, the groundwater level rose by about 25 m due to the declined sea level in the Mid-Holocene. During this period, surface run-off was possible as groundwater levels temporarily reached the ground surface. The natural groundwater budget reacted sensitively to changes in climate. Between 10 and 3 ka, groundwater storage occurred. During the Late Holocene, at 3 ka, natural depletion of the groundwater system began, which still prevails today.  相似文献   
7.
The Atmospheric Imaging Assembly (AIA) instrument onboard the Solar Dynamics Observatory (SDO) is an array of four normal-incidence reflecting telescopes that image the Sun in ten EUV and UV wavelength channels. We present the initial photometric calibration of AIA, based on preflight measurements of the response of the telescope components. The estimated accuracy is of order 25%, which is consistent with the results of comparisons with full-disk irradiance measurements and spectral models. We also describe the characterization of the instrument performance, including image resolution, alignment, camera-system gain, flat-fielding, and data compression.  相似文献   
8.
Arsenic is a redox‐sensitive element of environmental relevance and often enriched in iron sulphides. Because sediments from the Achterwasser lagoon, a part of the estuarine system of the river Oder, south‐west Baltic Sea, show unexpectedly high pyrite concentrations of up to 7·5 wt% they were used to investigate the influence of authigenic pyrite on the mobility and burial of As in the coastal environment. Micro‐X‐ray‐fluorescence measurements of 106 micrometre‐sized pyrite framboids from the anoxic sediments show highly variable As concentrations ranging from 6 to 1142 μg g?1. Even within a 1 cm thick layer, the As concentration of different framboids varies greatly and no clear depth trend is visible throughout the 50 cm long sediment core. Pyrite can account for 9 to 55% (average 22%) of the total As budget of the sediments and the degree of trace metalloid pyritization for As ranges from 26 to 61%, indicating that authigenic pyrite formation is an important process in the geochemical cycling of As in coastal sediments. High‐resolution micro‐X‐ray fluorescence mapping of single pyrite grains shows that As is distributed inhomogeneously within larger framboids, suggesting changing pore water composition during pyrite growth. X‐ray absorption near edge structure spectra indicate that As is usually present as As(‐I) substituting S in the pyrite lattice. However, in samples close to the sediment/water interface a considerable part of As is in higher valence states (+III/+V). This can be explained by frequent re‐suspension of the surficial sediments to the oxic water column due to wave action and subsequent re‐deposition, leading to the adsorption of As oxyanions onto pyrite. Although reduced As(‐I) becomes more important in the deeper samples, reflecting decreasing redox potential and a longer time since deposition, the occurrence of oxidized As species (AsIII/AsV) in pyrite in the anoxic part of the sediment suggests formation under dysoxic conditions.  相似文献   
9.
The water demand in arid regions is commonly covered by groundwater resources that date back to more humid periods of the Pleistocene and Holocene. Within the investigated arid part of SE Saudi-Arabia information about climate, groundwater levels, and pumping rates are only available for regions where groundwater extractions occur at present-day. For the prediction of the impact of long-term climate changes on groundwater resources an understanding of the hydrogeological and hydrological past and the development of the aquifers is necessary. Therefore, all available information about hydrology and hydrogeology for the past 10,000 years BP were collected and compiled to a conceptual model of the aquifer development on the Arabian Peninsula since the last Ice-Age. The climatic history was displayed by changes in precipitation, temperature and recharge during the mid-S and late Holocene. The hydrogeological development is described by groundwater ages, sea level fluctuations, movement of the coastline, and the development of sabkhas. The most sensitive parameter to describe the development of aquifer system is recharge. Present-day recharge was calculated with the hydrological model system HEC-HMS accounting for current precipitation, temperature, wind, soil types, and geomorphology. With respect to changes in precipitation and temperature over the past 10,000 years the temporal and spatial variability of groundwater recharge was calculated using empirical equations valid for semi-arid and arid settings. Further inflow into the groundwater system results from surface water infiltration in wadi beds, while natural outflow from the groundwater system occurs by discharge to the Gulf, evaporation from sabkhas, and spring discharge. Backward predictions can be verified by sedimentological observations of palaeo-river systems and lakes indicating that groundwater levels reached temporarily the surface under wetter climate conditions and 14C groundwater ages displaying groundwater residence times.  相似文献   
10.
In the year 2000, the elemental composition of mosses collected from 528 French sites has been studied as part of the 2000 European Moss Survey. Five moss species were collected: Scleropodium purum (56%), Pleurozium schreberi (18%), Hypnum cupressiforme (18%), Thuidium tamariscinum (4.5%.) and Hylocomium splendens (3.5%). Mosses were kept whole for analysis, including green and brownish parts. Summary statistics on element concentrations (Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, P, Pb, Rb, Sr, V and Zn), and comparisons made with data from the other 27 participating European countries are shown here. The sources of these elements are identified using calculations of enrichment factors (EF) and principal component analysis (PCA). Finally, the spatial distribution in France of 10 elements is also shown, using maps underscoring areas showing highest concentration levels for each metal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号