首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   1篇
地质学   6篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Raspini  F.  Bianchini  S.  Moretti  S.  Loupasakis  C.  Rozos  D.  Duro  J.  Garcia  M. 《Natural Hazards》2016,82(1):155-173
Land subsidence is a common natural hazard striking extensive areas worldwide, with severe impacts on economy and environment. Subsidence has been recognized as one of geohazards needing research efforts and knowledge transfer at international level, especially when urban fabrics and infrastructures are directly involved in the land settling. Policies and solutions for land subsidence management can be different. Despite this variability, where mitigation methods need to be adopted, mapping, monitoring and simulation of subsidence have to precede their design and implementation. In this framework, Earth Observation (EO) and remote sensing have a major role to play. Satellite Synthetic Aperture Radar Interferometry, thanks to its wide spatial coverage and its millimeter accuracy, provides a valuable contribution in the management of hazard posed by subsidence-related deformation. The ESA-GMES Terrafirma project (2003–2014) has worked for the promotion of the persistent scatterer interferometry, a family of techniques ideally suited for the assessment of magnitude of surface deformations associated with subsidence phenomena. Within the Terrafirma Project a series of products, based on the integration of EO technologies and in situ data, has been established and delivered to a wide community of end user. Three case studies, outcomes of the Terrafirma project, are presented: the wide area of Rome (Italy), the Anthemountas basin and the Kalochori village (Greece). These case studies have been selected with the purpose of showing the essential contribution of interferometric data during the main activities that must be covered when dealing with geohazard investigations (i.e., mapping, monitoring and modeling). These three case studies are meant to be representative of the suite of services delivered by the Terrafirma project to specific end users with the legal mandated to manage the geohazard.  相似文献   
2.
3.
4.
The spatial resolution of digital elevation models (DEMs) is an important factor for reliable landslide studies. Multi-interferometric techniques such as persistent scatterer interferometric synthetic aperture radar (PSInSAR) are used to evaluate the landslide state of activity and its ground deformation velocity, which is commonly measured along the satellite line of sight (LOS). In order to compare velocities measured by different satellites in different periods, their values can be projected along the steepest slope direction, which is the most probable direction of real movement. In order to achieve this result, DEM-derived products are needed. In this paper, the effectiveness of different DEM resolutions was evaluated in order to project ground deformation velocities measured by means of PSInSAR technique in two different case studies in the Messina Province (Sicily, southern Italy): San Fratello and Giampilieri. Three DEMs were used: (i) a 20-m resolution DEM of the Italian Military Geographic Institute (IGM), (ii) a 2-m resolution DEM derived from airborne laser scanning (ALS) light detection and ranging (LiDAR) data for the San Fratello 2010 landslide, and (iii) a 1-m resolution DEM derived from ALS LiDAR data for the area of Giampilieri. The evaluation of the applied method effectiveness was performed by comparing the DEMs elevation with those of each single permanent scatterer (PS) and projecting the measured velocities along the steepest slope direction. Results highlight that the higher DEM resolution is more suitable for this type of analysis; in particular, the PS located nearby the watershed divides is affected by geometrical problems when their velocities are projected along the steepest slope.  相似文献   
5.
Post-event Interferometric Synthetic Aperture Radar (InSAR) analysis on a stack of 45 C-band SAR images acquired by the ESA Sentinel-1 satellites from 9 October 2014 to 19 June 2017 allowed the identification of a clear precursory deformation signal for the Maoxian landslide (Mao County, Sichuan Province, China). The landslide occurred in the early morning of 24 June 2017 and killed more than 100 people in the village of Xinmo. Sentinel-1 images have been processed through an advanced multi-interferogram analysis capable of maximising the density of measurement points, generating ground deformation maps and displacement time series for an area of 460 km2 straddling the Minjiang River and the Songping Gully. InSAR data clearly show the precursors of the slope failure in the source area of the Maoxian landslide, with a maximum displacement rate detected of 27 mm/year along the line of sight of the satellite. Deformation time series of measurement points identified within the main scarp of the landslide exhibit an acceleration starting from April 2017. A detailed time series analysis leads to the classification of different deformation behaviours. The Fukuzono method for forecasting the time of failure appear to be applicable to the displacement data exhibiting progressive acceleration. Results suggest that satellite radar data, systematically acquired over large areas with short revisiting time, could be used not only as a tool for mapping unstable areas, but also for landslide monitoring, at least for some typologies of sliding phenomena.  相似文献   
6.
Natural Hazards - Landslides are common phenomena that occur worldwide and are a main cause of loss of life and damage to property. The hazards associated with landslides are a challenging concern...  相似文献   
7.
On December 3, 2013, a large complex landslide was triggered SW of the town of Montescaglioso (Southern Italy), causing the destruction of roads, commercial buildings and private dwellings, as well as several direct and indirect economic losses. A set of interferometric ground measurements acquired by the Cosmo-SkyMed satellite constellation and processed by means of the SqueeSAR algorithm was used to study the pre-event slope displacements in the entire Montescaglioso municipal area. Data span from January 30, 2012, to December 2, 2013, and show average line-of-sight velocities of 1–10 mm/year in the slope sector ultimately affected by the collapse. In retrospect, a time series analysis of the radar targets was performed in order to identify and characterize all the slope instabilities in proximity of the town. This was based on the setup of characteristic thresholds of displacement. The procedure permitted to locate several areas which recurrently exceeded these previously established thresholds, in consistency with the amount of precipitation. In particular, the major source of potential hazard in the area was indeed found where the December 3, 2013, landslide eventually occurred. The results of this quick data processing technique were validated through comparison with two independently developed landslide maps. This simple method, which is not supposed to diminish the importance of geomorphologic field surveys, could improve both the accuracy and the update rate of landslide susceptibility maps. Not relying on arbitrary or empirically derived approaches, it has the advantage of computing statistically based thresholds specific for each time series. By indicating the slope sectors in higher need of deeper in situ investigation, more support could be provided to administrative bodies for the processes of risk assessment and management.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号