首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2021年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 187 毫秒
1
1.
Two ore and three alteration types were identified in the Lascogon Project of Philex Gold Philippines, in Surigao del Norte, Mindanao Island, Philippines. The jasperoid ore is the host to the Carlin‐like gold mineralization in the Lascogon and Danao prospects. The ore occurs in a decalcified and silicified horizon, with minor chlorite and goethite, stibnite, pyrite and quartz crystals ranging from cryptocrystalline to botryoidal. The stringer–stockwork type Cu‐Au mineralization in the Suyoc prospect is hosted in argillized andesitic rocks of the Mabuhay Formation. The primary ore minerals are chalcopyrite with minor amounts of sphalerite. The alteration types identified are propylitic alteration, argillic alteration and silicification. The propylitized basaltic and andesitic flows of the Bacuag Formation bound the jasperoid mineralization in the Lascogon prospect. Stratigraphically, the relationship between propylitized basalts and stringer–stockwork Cu‐Au is not clear but a lateral change can be inferred from jasperoid in the center and stringer–stockwork towards the east.  相似文献   
2.
The Southwest prospect is located at the southwestern periphery of the Sto. Tomas II porphyry copper–gold deposit in the Baguio District, northwestern Luzon, Philippines. The Southwest prospect hosts a copper‐gold mineralization related to a complex of porphyry intrusions, breccia facies, and overlapping porphyry‐type veinlets emplaced within the basement Pugo metavolcanics rocks and conglomerates of the Zigzag Formation. The occurrences of porphyry‐type veinlets and potassic alteration hosted in the complex are thought to be indications of the presence of blind porphyry deposits within the Sto. Tomas II vicinity. The complex is composed of at least four broadly mineralogically similar dioritic intrusive rocks that vary in texture and alteration type and intensity. These intrusions were accompanied with at least five breccia facies that were formed by the explosive brecciation, induced by the magmatic–hydrothermal processes and phreatomagmatic activities during the emplacement of the various intrusions. Hydrothermal alteration assemblages consisting of potassic, chlorite–magnetite, propylitic and sericite–chlorite alteration, and contemporaneous veinlet types were developed on the host rocks. Elevated copper and gold grades correspond to (a) chalcopyrite–bornite assemblage in the potassic alteration in the syn‐mineralization early‐mineralization diorite (EMD) and contemporaneous veinlets and (b) chalcopyrite‐rich mineralization associated with the chalcopyrite–magnetite–chlorite–actinolite±sericite veinlets contemporaneous with the chlorite–magnetite alteration. Erratic remarkable concentrations of gold were also present in the late‐mineralization Late Diorite (LD). High XMg of calcic amphiboles (>0.60) in the intrusive rocks indicate that the magmas have been oxidizing since the early stages of crystallization, while a gap in the composition of Al between the rim and the cores of the calcic amphiboles in the EMD and LD indicate decompression at some point during the crystallization of these intrusive rocks. Fluid inclusion microthermometry suggests the trapping of immiscible fluids that formed the potassic alteration, associated ore mineralization, and sheeted quartz veinlets. The corresponding formation conditions of the shallower and deeper quartz veinlets were estimated at pressures of 50 and 30 MPa and temperatures of 554 and 436°C at depths of 1.9 and 1.1 km. Temperature data from the chlorite indicate that the chalcopyrite‐rich mineralization associated with the chlorite–magnetite alteration was formed at a much lower temperature (ca. 290°C) than the potassic alteration. Evidence from the vein offsetting matrix suggests multiple intrusions within the EMD, despite the K‐Ar ages of the potassic alteration in EMD and hornblende in the LD of about the same age at 3.5 ± 0.3 Ma. The K‐Ar age of the potassic alteration was likely to be thermally reset as a result of the overprinting hydrothermal alteration. The constrained K‐Ar ages also indicate earlier formed intrusive rocks in the Southwest prospect, possibly coeval to the earliest “dark diorite” intrusion in the Sto. Tomas II deposit. In addition, the range of δ34S of sulfide minerals from +1.8‰ to +5.1‰ in the Southwest prospect closely overlaps with the rest of the porphyry copper and epithermal deposits in the Sto. Tomas II deposit and its vicinity. This indicates that the sulfides may have formed from a homogeneous source of the porphyry copper deposits and epithermal deposits in the Sto. Tomas II orebody and its vicinity. The evidence presented in this work proves that the porphyry copper‐type veinlets and the adjacent potassic alteration in the Southwest prospect are formed earlier and at a shallower level in contrast with the other porphyry deposits in the Baguio District.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号