首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
大气科学   1篇
地质学   8篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2001年   1篇
  1999年   2篇
  1992年   1篇
排序方式: 共有9条查询结果,搜索用时 62 毫秒
1
1.
New geochemical and sulphur isotopic data are presented for a number of pyrite deposits from the Late Jurassic–Early Cretaceous Cameros Basin, Spain. The deposits were formed at, or close to, the peak of metamorphism and are always related to sandstone units in the mainly metapelite sequence. Iron remained immobile and conservative, pyrite iron being derived by sulphidation of chlorite in the host metapelites. Reduced sulphur, however, was supplied from two external sources: thermochemical reduction of sulphate and release of S during metamorphism of sedimentary sulphides. These sources provided isotopically heavy and light S, respectively, with variation in pyrite isotopic composition between different deposits resulting from differences in their relative importance at each site. During metamorphism, the sandstone units acted as aquifers, carrying the sulphidic pore waters to locations where permeability provided by syn-depositional fractures on a scale of 0.5–5  m allowed its interaction with the metapelites. Transport distances for sulphide during metamorphism were of the order of hundreds of metres.  相似文献   
2.
This work presents the main characteristics of 97 quarry wastes, collected in 23 gravel pits, from the Jarama river area, Madrid province, Spain. In this area, more than 2.5 × 106 ton of silty-clay waste are generated every year, and no applications have as yet been defined for them. This work is the first systematic study of the fine fractions generated from the Jarama river quaternary deposits, playing part in the comprehension of this complex terrace systems. Quartz, potassium feldspar, plagioclase, calcite, and complex mixtures of phyllosilicates, such as smectite, illite, kaolinite, chlorite and illite/smectite mixed layer, have been detected. Two sets of waste which are recognized according to the calcite content, have been directly related with the terrace level beneficed in the Jarama river, and the position along the valley. Calcite concentrates in the wastes produced in the lower course, where Henares and Tajuña tributaries promote an extensive change in the geochemistry of underground water, and locally, in the petrology of quarried conglomerates. This clear distinction by location between calcite-bearing and calcite-free wastes is essential for potential applications, such as soil conditioning, raw materials for brick or tiles, etc. The wastes studied can be considered as a potential source of industrial raw materials because of their uniformity and large volume. This suggestion is now being carried out, with an attempt at assessing the possibilities of using these mining wastes as ceramic raw materials.  相似文献   
3.
This paper describes unusual graphite–sulfide deposits in ultramafic rocks from the Serranía de Ronda (Spain) and Beni Bousera (Morocco). These deposits occur as veins, stockworks and irregular masses, ranging in size from some centimeters to a few meters in thickness. The primary mineral assemblage mainly consists of Fe–Ni–Cu sulfides (pyrrhotite, pentlandite, chalcopyrite and cubanite), graphite and chromite. Weathering occurs in some sulfide-poor deposits that consist of graphite (up to 90%), chromite and goethite. Texturally, graphite may occur as flakes or clusters of flakes and as rounded, nodule-like aggregates. Graphite is highly crystalline and shows light carbon isotopic signatures (δ13C≈− 15‰ to − 21‰). Occasionally, some nodule-like graphite aggregates display large isotopic zoning with heavier cubic forms (probably graphite pseudomorphs after diamond with δ13C up to − 3.3‰) coated by progressively lighter flakes outwards (δ13C up to − 15.2‰).Asthenospheric-derived melts originated the partial melting (and melt–rock reactions) of peridotites and pyroxenites generating residual melts from which the graphite–sulfide deposits were formed. These residual melts concentrated volatile components (mainly CO2 and H2O), as well as S, As, and chalcophile elements. Carbon was incorporated into the melts from the melt–rock reactions of graphite-bearing (formerly diamonds) garnet pyroxenites with infiltrated asthenospheric melts. Graphite-rich garnet pyroxenites formed through the UHP transformation of subducted kerogen-rich crustal material into the mantle. Thus, graphite in most of the studied occurrences has light (biogenic) carbon signatures. Locally, reaction of the light carbon in the melts with relicts of 13C-enriched graphitized diamonds (probably generated from hydrothermal calcite veins in the subducting oceanic crust) reacted with the partial melts to form isotopically zoned nodule-like graphite aggregates.  相似文献   
4.
Epigenetic, vein-type graphite mineralization originates by deposition from C—O—H fluids in high-temperature environments. Consequently, fluid-deposited graphite is uniformly highly crystalline in volumetrically large occurrences. This work examines the factors controlling graphite crystallinity in fluid-deposited occurrences with reference to some case studies from southern Spain where vein-type graphite is associated with a variety of host rocks. Possible causes influencing high crystallinity of graphite in these occurrences include: (1) large graphite occurrences are generated from large volumes of fluids that maintain their temperatures for long periods of time, which is easier at higher temperatures; (2) high temperature conditions are required for a fluid to precipitate a major part of its dissolved carbon during a small temperature decrease; (3) carbon is incorporated into C—O—H fluids mainly through devolatilization reactions which also require high temperatures; (4) highly crystalline graphite generated at high-T/high-P conditions is less susceptible to resorption as P decreases or by subsequent fluid flow; (5) graphite precipitation involves high activation energy that can be overcome only if the temperature is high enough. These causes can be extrapolated to most vein-type graphite deposits worldwide. Received: 23 February 1998 / Accepted: 28 April 1998  相似文献   
5.
A large portion of the Occidental Region of Paraguay consists of a semi-arid territory with vegetation adapted to the features of this region. For just over a decade, a process of intense deforestation has resulted from the expansion of mechanized farming, carried out without any form of land management or planning; this has led to the fragmentation of the forests in this region. This study has taken satellite imagery from 1975, 1990, 2000 and 2007 with the purpose of determining the average size of the fragments and the rate of forest discontinuity; the results of this multi-temporal imagery analysis show that (a) in some areas of the Central Chaco, the forest matrix was transformed principally into cropped areas; (b) the majority of the fragments are isolated from one other; and (c) the areas mostly covered by forests are in the north-northeastern and northwestern areas and this is mainly as a result of a greater concentration of protected areas. In conclusion, the vulnerability of the vegetation formations increases with the fragmentation process, to which we should add an increased frequency of fires, a reduced resilience and homeostasis of the vegetation formations; thus these are highly exposed to climate change factors. It is imperative that the forest landscapes be restored, through the implementation biological corridors, to ensure the continuity of the remaining forests.  相似文献   
6.
The fractionation of five heavy metals in a washing aggregate sludge, a sewage sludge, a clay-rich sediment, the mixtures of these materials and the lightweight aggregates manufactured with them has been determined by applying the optimized European Community Bureau of Reference sequential extraction procedure in order to evaluate the effects of the heating process on the extraction of these elements. Additionally, preparation of eluates by aggregate leaching has been performed in accordance with the UNE-EN-H44-3 standard. The availability of all the studied heavy metals has been reduced by the thermal treatment, since most of the heavy metals have become part of the undigested material in the lightweight aggregates. Nickel has been the heavy metal that has presented the highest concentration in the eluates obtained after completion of the single extraction procedure in the lightweight aggregates. The studied lightweight aggregates may be used in lightweight concrete manufacturing from the standpoint of heavy metal leaching.  相似文献   
7.
Graphite in the Borrowdale (Cumbria, UK) deposit occurs as large masses within mineralized pipe-like bodies, in late graphite–chlorite veins, and disseminated through the volcanic host rocks. This occurrence shows the greatest variety of crystalline graphite morphologies recognized to date from a single deposit. These morphologies described herein include flakes, cryptocrystalline and spherulitic aggregates, and dish-like forms. Colloform textures, displayed by many of the cryptocrystalline aggregates, are reported here for the first time from any graphite deposit worldwide. Textural relationships indicate that spherulitic aggregates and colloform graphite formed earlier than flaky crystals. This sequence of crystallization is in agreement with the precipitation of graphite from fluids with progressively decreasing supersaturation. The structural characterization carried out by means of Raman spectroscopy shows that, with the exception of colloform graphite around silicate grains and pyrite within the host rocks, all graphite morphologies display very high crystallinity. The microscale SIMS study reveals light stable carbon isotope ratios for graphite (δ 13C = −34.5 to −30.2‰), which are compatible with the assimilation of carbon-bearing metapelites in the Borrowdale Volcanic Group magmas. Within the main mineralized breccia pipe-like bodies, the isotopic signatures (with cryptocrystalline graphite being lighter than flaky graphite) are consistent with the composition and evolution of the mineralizing fluids inferred from fluid inclusion data which indicate a progressive loss of CO2. Late graphite–chlorite veins contain isotopically heavier spherulitic graphite than flaky graphite. This agrees with CH4-enriched fluids at this stage of the mineralizing event, resulting in the successive precipitation of isotopically heavier graphite morphologies. The isotopic variations of the different graphite morphologies can be attributed therefore, to changes in the speciation of carbon in the fluids coupled with concomitant changes in the XH2O during precipitation of graphite and associated hydrous minerals (mainly epidote and chlorite).  相似文献   
8.
Geological and mineralogical characteristics of the two largest graphite vein deposits associated with the ultramafic rocks of the Serranía de Ronda (Málaga, southern Spain) are described for the first time in this paper. The deposits are hosted in the spinel-lherzolite facies of the ultramafic sequence forming in single dikes, pockets and stockworks. Veins are composed of graphite, chromite and Fe-Ni-Cu sulfides. Graphite crystallinity reflects their fully ordered nature, and the c0 parameter indicates temperatures at the time of formation ranging from 770 °C to 820 °C. According to the mineralogy and structural features of graphite veins, a magmatic origin involving assimilation of biogenic carbon from crustal rocks is proposed.  相似文献   
9.
The low‐grade metasediments of the Cameros Basin, northern Spain, host a number of deposits of spectacular quality pyrite mineralization. These formed during regional metamorphism and the pyrite crystals exhibit a wide range of morphologies. On the basis of pyrite crystal habit, the deposits can be classified into two groups: Group I comprises deposits with cubic, elongated or platy crystals; Group II comprises deposits characterized by pyritohedra and cubo‐pyritohedra with striated faces, along with blocky crystals and fine‐grained aggregates. Group I deposits are formed in sequences dominated by meandriform fluviatile sediments, while Group II is hosted by deltaic plain and lacustrine metasediments. Temperature differences between deposits and As content are possible causes of the different pyrite morphologies in the deposits, but no significant variation exists between the two groups for either factor. Comparison with experimentally grown pyrite crystals suggests that Group I deposits have morphologies indicative of lower degrees of pyrite supersaturation than pyrite crystals in Group II deposits. The sedimentary facies hosting Group II deposits provides a greater availability of sedimentary sulphur (pyrite and sulphates). Moreover, reactions involving sulphate during metamorphism may have modified fluid chemistry, which would also act to produce higher degrees of pyrite saturation in fluids derived from the sulphate‐rich deltaic plain and lacustrine metasediments hosting the Group II deposits. This hypothesis is confirmed by sulphur isotope data on the pyrites, which show a larger component of34S‐enriched sulphate‐derived sulphur in these deposits. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号