首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  1992年   1篇
  1974年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The Smartville Complex is a late Jurassic, rifted volcanic arc in the northern Sierra Nevada, California. Near Auburn, California, it consists of a lower volcanic unit, dominated by basaltic flows, and an upper volcanic unit of andesitic volcaniclastic rocks, both of which have been intruded by dykes and irregular bodies of diabase. These rocks contain relict igneous minerals, and the metamorphic minerals albite, chlorite, quartz, pumpellyite, prehnite, epidote, amphibole, titanite, garnet, biotite, K-feldspar, white mica, calcite, and sulphide and oxide minerals.
Prehnite–pumpellyite (PrP), prehnite–actinolite (PrA), and greenschist (GS) zones have been identified. The pumpellyite-out isograd separates the PrP and PrA zones, and the prehnite-out isograd separates the PrA and GS zones. The minerals Ab + Qtz + Mt + Tn are common to most assemblages in all three zones. The MgO/(MgO + FeO) ratio of the effective bulk composition has an important and systematic effect on the observed mineral assemblages in the PrP zone. Prehnite-bearing assemblages contain the additional minerals, Pmp + Amp + Ep + Chl in MgO-rich rocks, and either Pmp + Ep + Chl or Amp + Ep + Chl in less magnesian rocks. Subcalcic to calcic amphibole is common in the PrP zone. The mineral assemblage Prh + Act + Ep + Chl, without Pmp, characterizes the PrA zone, and the mineral assemblage Act + Ep + Chl, without Prh or Pmp, characterizes the GS zone. The disappearance of pumpellyite and prehnite occurred by continuous reactions.
The sequence of mineral assemblages was produced by burial metamorphism at P–T conditions of 300° 50°C at approximately 2.5 ± 0.5 kbar. During metamorphism, the composition of the fluid phase was nearly 100% H2O and the oxygen fugacity was between the hematite–magnetite and quartz–fayalite–magnetite buffers.  相似文献   
2.
Within the western Sierra Nevada metamorphic belt, linear bodiesof alpine-type ultramafic rock, now composed largely of serpentineminerals, parallel the regional strike and commonly coincidewith major fault zones. Within this metamorphic belt, east ofSacramento, California, ultramafic rocks near a large maficintrusion, the Pine Hill Intrusive Complex, have been emplacedduring at least two separate episodes. Those ultramafic rocks,evidently unaffected by the Pine Hill Intrusive Complex andcomposed largely of serpentine minerals, were emplaced alonga major fault zone after emplacement of the Pine Hill IntrusiveComplex. Those ultramafic rocks, contact metamorphosed by thePine Hill Intrusive Complex, show a zonation of mineral assemblagesas the igneous contact is approached: olivine+antigorite+chlorite+tremolite+Fe-Cr spinel olivine+talc+chlorite+tremolite+Fe-Crspinel olivine+anthophyllite+chlorite+tremolite+Fe-Cr spinel olivine+orthopyroxene+aluminous spinel+hornblende+Fe-Cr spinel.Superimposed on these mineral assemblages are abundant secondaryminerals (serpentine minerals, talc, chlorite, magnetite) whichformed after contact metamorphism. Correlation of observed mineralassemblages with the experimental systems, MgO-SiO2-H2O andMgO-Al2O3-SiO2-H2O suggests an initial contact temperature of775±25 °C for the Pine Hill Intrusive Complex assumingPtotal Pfluid PH2O. The pressure acting on the metamorphic rockduring emplacement of the intrusion is estimated to be a minimumof 1.5 kb.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号