首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   4篇
  2011年   1篇
  2010年   2篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 781 毫秒
1
1.
Zech, M., Andreev, A., Zech, R., Müller, S., Hambach, U., Frechen, M. & Zech, W.: Quaternary vegetation changes derived from a loess‐like permafrost palaeosol sequence in northeast Siberia using alkane biomarker and pollen analyses. Boreas, Vol. 39, pp. 540–550. 10.1111/j.1502‐3885.2009.00132.x. ISSN 0300‐9483 Alkane biomarker and pollen data were obtained from a 15‐m‐high and probably c. 240‐kyr‐old loess‐like permafrost palaeosol sequence (‘Tumara Palaeosol Sequence’, TPS) in northeast Siberia. The alkane results were corrected for degradation effects by applying an end‐member model and were evaluated by comparing them with the palynological results. The two data sets are generally in good agreement and suggest that the lower part of the TPS developed mainly under larch forests, whereas the upper part of the sequence reflects the expansion of mammoth steppes during the Weichselian glaciation and finally reforestation during the Lateglacial and the early Holocene. For the lower part of the TPS, the palaeoclimatic interpretation according to modern analogue methods would indicate warm, interglacial conditions, but this is at odds with the climate chronostratigraphy based on a multi‐proxy palaeopedological approach and numeric dating. Provided that the correlation of the discussed stratigraphic unit with the Late Saalian glaciation and the Marine Oxygen Isotope Stage 6 is correct, our results suggest that temperature was not a limiting factor for tree growth at that time. Furthermore, it seems very likely that it was not mainly temperature changes but rather increasing aridity and continentality during the course of the last glacial that favoured the expansion of the mammoth steppe.  相似文献   
2.
Werner, K., Tarasov, P. E., Andreev, A. A., Müller, S., Kienast, F., Zech, M., Zech, W. & Diekmann, B. 2009: A 12.5‐kyr history of vegetation dynamics and mire development with evidence of Younger Dryas larch presence in the Verkhoyansk Mountains, East Siberia, Russia. Boreas, 10.1111/j.1502‐3885.2009.00116.x. ISSN 0300‐9483. A 415 cm thick permafrost peat section from the Verkhoyansk Mountains was radiocarbon‐dated and studied using palaeobotanical and sedimentological approaches. Accumulation of organic‐rich sediment commenced in a former oxbow lake, detached from a Dyanushka River meander during the Younger Dryas stadial, at ~12.5 kyr BP. Pollen data indicate that larch trees, shrub alder and dwarf birch were abundant in the vegetation at that time. Local presence of larch during the Younger Dryas is documented by well‐preserved and radiocarbon‐dated needles and cones. The early Holocene pollen assemblages reveal high percentages of Artemisia pollen, suggesting the presence of steppe‐like communities around the site, possibly in response to a relatively warm and dry climate ~11.4–11.2 kyr BP. Both pollen and plant macrofossil data demonstrate that larch woods were common in the river valley. Remains of charcoal and pollen of Epilobium indicate fire events and mark a hiatus ~11.0–8.7 kyr BP. Changes in peat properties, C31/C27 alkane ratios and radiocarbon dates suggest that two other hiatuses occurred ~8.2–6.9 and ~6.7–0.6 kyr BP. Prior to 0.6 kyr BP, a major fire destroyed the mire surface. The upper 60 cm of the studied section is composed of aeolian sands modified in the uppermost part by the modern soil formation. For the first time, local growth of larch during the Younger Dryas has been verified in the western foreland of the Verkhoyansk Mountains (~170 km south of the Arctic Circle), thus increasing our understanding of the quick reforestation of northern Eurasia by the early Holocene.  相似文献   
3.
Human activities such as river corrections and deviations, lake‐level regulations and installations of hydropower plants affect and often strongly modify natural processes in lacustrine systems. In 1714, the previously bypassing Kander River was deviated into peri‐alpine Lake Thun. This pioneering geo‐engineering project, the first river correction of such dimensions in Switzerland, doubled the water and sediment input to the lake. In order to evaluate the sedimentary consequences of the Kander River deviation, the lacustrine sediments were investigated using a combined approach of high‐resolution (3·5 kHz) reflection seismic data and sediment cores (maximum length 2·5 m). The significance of this study is increased by the possible hazard represented by ammunition dumped into the lake (from 1920 to 1960) and by the recent installation of a gas pipeline on the lake floor in 2007/2008. The first 130 years after the river deviation were dominated by an extremely high sediment input, which led to the frequent occurrence of subaquatic mass movements. Slope failures primarily occur due to rapid sediment accumulation, but were occasionally triggered in combination with earthquake‐induced shocks and lake‐level fluctuations. After 1840, mass‐movement activity and sedimentation rates decreased due to a reduced sediment input as the Kander River adjusted to its new base level and, to a smaller degree, by further engineering of the Kander River bed and gravel withdrawal at the Kander Delta. A further consequence of the Kander River deviation is that the shores around Lake Thun have been more frequently affected by flooding due to the increased water input. In the time span from 1850 to 2006, six historically and/or instrumentally documented flood events could be correlated to flood turbidites in the sediment cores. This study demonstrates the significant usefulness of lacustrine sediments, not only in archiving natural hazards and human impact but also in assessing the consequences of future anthropogenic interventions on lacustrine systems.  相似文献   
4.
In order to evaluate the sensitivity of aquatic and terrestrial ecosystems to climatic changes, lithological (sediment structure and color, grain size, physical properties) and biochemical (TOC, TOC/TN, δ13C of TOC and carbonates) investigations were carried out on an 11.12 m-long sediment core from Lama Lake (Central Siberia, Putorana Plateau). According to the pollen data, the sequence represents the termination of the Pleistocene, and the entire Holocene. It is composed of highly terrigenous and stratified clays and silts. Sediment structure, grain-size distribution, carbonate contents and physical properties of the sediment indicate that glaciers were present in the catchment area of Lama Lake during the period Oldest Dryas to AllerØd. For the same time period, δ13C values of TOC give indications of a perennial ice cover. Since the AllerØd, organic matter accumulation has increased, caused by an increasing input of land vegetation and aquatic primary production as revealed by relations TOC contents, TOC/TN ratios and δ13C values of TOC. During the Holocene climatic optimum, in late Preboreal and Boreal times, biogenic primary production in Lama Lake reached its maximum and the vegetation in the catchment area changed from grassy tundra to a dense forest. From the Atlantic period to the present, small variations in δ13C values of TOC and TOC contents are probably related to the location of Lama Lake on the border between grass and wooded steppe, leading to responses of environmental conditions to even small changes in climate.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号