首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
大气科学   8篇
地质学   1篇
  2016年   1篇
  2011年   3篇
  2007年   2篇
  2005年   1篇
  2003年   2篇
排序方式: 共有9条查询结果,搜索用时 484 毫秒
1
1.
The day-to-day behavior of Indian summer monsoon rainfall (IMR) is associated with a hierarchy of quasi-periods, namely 3?C7, 10?C20 and the 30?C60?days. These two periods, the 10?C20?days and the 30?C60?days have been related with the active and break cycles of the monsoon rainfall over the Indian sub-continent. The seasonal strength of Indian summer monsoon rainfall may depend on the frequency and duration of spells of break and active periods associated with the fluctuations of the above intra-seasonal oscillations (ISOs). Thus the predictability of the seasonal (June through September) mean Indian monsoon depends on the extent to which the intra-seasonal oscillations could be predicted. The primary objective of this study is to bring out the dynamic circulation features during the pre-monsoon/monsoon season associated with the extreme phases of these oscillations The intense (weak) phase of the 10?C20 (30?C60) days oscillation is associated with anti-cyclonic circulation over the Indian Ocean, easterly flow over the equatorial Pacific Ocean resembling the normal or cold phase (La Nina) of El Nino Southern Oscillation (ENSO) phenomenon, and weakening of the north Pacific Sub-tropical High. On the other hand the weak phase of 10?C20?days mode and the intense phase of 30?C60?days mode shows remarkable opposite flow patterns. The circulation features during pre-monsoon months show that there is a tendency for the flow patterns observed in pre-monsoon months to persist during the monsoon months. Hence some indications of the behavior of these modes during the monsoon season could be foreshadowed from the spring season patterns. The relationship between the intensity of these modes and some of the long-range forecasting parameters used operationally by the India Meteorological Department has also been examined.  相似文献   
2.
South Asian summer monsoon (June through September) rainfall simulation and its potential future changes are evaluated in a multi-model ensemble of global coupled climate models outputs under World Climate Research Program Coupled Model Intercomparison Project (WCRP CMIP3) dataset. The response of South Asian summer monsoon to a transient increase in future anthropogenic radiative forcing is investigated for two time slices, middle (2031–2050) and end of the twenty-first century (2081–2100), in the non-mitigated Special Report on Emission Scenarios B1, A1B and A2 .There is large inter-model variability in the simulation of spatial characteristics of seasonal monsoon precipitation. Ten out of the 25 models are able to simulate space–time characteristics of the South Asian monsoon precipitation reasonably well. The response of these selected ten models has been examined for projected changes in seasonal monsoon rainfall. The multi-model ensemble of these ten models projects a significant increase in monsoon precipitation with global warming. The substantial increase in precipitation is observed over western equatorial Indian Ocean and southern parts of India. However, the monsoon circulation weakens significantly under all the three climate change experiments. Possible mechanisms for the projected increase in precipitation and for precipitation–wind paradox have been discussed. The surface temperature over Asian landmass increases in pre-monsoon months due to global warming and heat low over northwest India intensifies. The dipole snow configuration over Eurasian continent strengthens in warmer atmosphere, which is conducive for the enhancement in precipitation over Indian landmass. No notable changes have been projected in the El Niño–Monsoon relationship, which is useful for predicting interannual variations of the monsoon.  相似文献   
3.
Indian Monsoon Variability in a Global Warming Scenario   总被引:4,自引:0,他引:4  
The Intergovernmental Panel on Climate Change (IPCC) constituted by the World Meteorological Organisation provides expert guidance regarding scientific and technical aspects of the climate problem. Since 1990 IPCC has, at five-yearlyintervals, assessedand reported on the current state of knowledge and understanding of the climate issue. These reports have projected the behaviour of the Asian monsoon in the warming world. While the IPCC Second Assessment Report (IPCC, 1996) on climate model projections of Asian/Indian monsoon stated ``Most climate models produce more rainfall over South Asia in a warmer climate with increasing CO2', the recent IPCC (2001) Third Assessment Report states ``It is likely that the warming associated with increasing greenhouse gas concentrations will cause an increase in Asian summer monsoon variability and changes in monsoon strength.'Climate model projections(IPCC, 2001) also suggest more El Niño – like events in the tropical Pacific, increase in surface temperatures and decrease in the northern hemisphere snow cover. The Indian Monsoon is an important component of the Asian monsoon and its links with the El Niño Southern Oscillation (ENSO) phenomenon, northern hemisphere surface temperature and Eurasian snow are well documented.In the light of the IPCC globalwarming projections on the Asian monsoon, the interannual and decadal variability in summer monsoon rainfall over India and its teleconnections have been examined by using observed data for the 131-year (1871–2001) period. While the interannual variations showyear-to-year random fluctuations, thedecadal variations reveal distinct alternate epochs of above and below normal rainfall. The epochs tend to last for about three decades. There is no clear evidence to suggest that the strength and variability of the Indian Monsoon Rainfall (IMR) nor the epochal changes are affected by the global warming. Though the 1990s have been the warmest decade of the millennium(IPCC, 2001), the IMR variability has decreased drastically.Connections between the ENSO phenomenon, Northern Hemisphere surface temperature and the Eurasian snow with IMR reveal that the correlations are not only weak but have changed signs in the early 1990s suggesting that the IMR has delinked not only with the Pacific but with the Northern Hemisphere/Eurasian continent also. The fact that temperature/snow relationships with IMR are weak further suggests that global warming need not be a cause for the recent ENSO-Monsoon weakening.Observed snow depth over theEurasian continent has been increasing, which could be a result of enhanced precipitation due to the global warming.  相似文献   
4.
Summary The influence of the Indian Ocean Zonal Mode on the extreme summer monsoon rainfall over East Asia (China, Korea, Japan) has been investigated applying simple statistical techniques of correlation and composite analysis. While the observed rainfall data are used as a measure of rainfall activity, the NCEP-NCAR Reanalysis data are used to examine the circulation features associated with the extreme monsoon phases and the dynamics of the zonal mode – monsoon variability connections. The data used covers the period 1960 to 2000.The equatorial Indian Ocean is dominated by westerly winds blowing towards Indonesia. However, during the positive phase of the zonal mode, an anomalous, intensified easterly flow prevails, consistent with the positive (negative) sea surface temperature anomalies over the western (southeastern) equatorial Indian Ocean. This positive phase of the zonal mode enhances summer monsoon activity over China, but suppresses the monsoon activity over the Korea-Japan sector, 3 to 4 seasons later. The relationship is more consistent and stronger over the Korea-Japan region than over China.The Indian Ocean influences the monsoon variability over East Asia via the northern hemisphere mid-latitudes or via the eastern Indian Ocean/west Pacific route. The monsoon-desert mechanism induces strong subsidence northwest of India due to the anomalous convection over the Indian Ocean region associated with the positive phase of the zonal mode. This induces a zonal wave pattern over the mid-latitudes of Asia propagating eastwards and displacing the north Pacific subtropical high over East Asia. The warming over the eastern Indian Ocean/west Pacific inhibits the westward extension of the north Pacific sub-tropical high. The location and shape of this high plays a dominant role in the monsoon variability over East Asia. The memory for delayed impact, three to four seasons later, could be carried by the surface boundary conditions of Eurasian snow cover via the northern channel or the equatorial SSTs near the Indonesian Through Flow via the southern channel.  相似文献   
5.
6.
Summary South Asian summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models assessed as part of the Intergovernmental Panel on Climate Change Fourth Assessment. Out of the 22 models examined, 19 are able to capture the maximum rainfall during the summer monsoon period (June through September) with varying amplitude. While two models are unable to reproduce the annual cycle well, one model is unable to simulate the summer monsoon season. The simulated inter-annual variability from the 19 models is examined with respect to the mean precipitation, coefficient of variation, long-term trends and the biennial tendency. The model simulated mean precipitation varies from 500 mm to 900 mm and coefficient of variation from 3 to 13%. While seven models exhibit long-term trends, eight are able to simulate the biennial nature of the monsoon rainfall. Six models, which generate the most realistic 20th century monsoon climate over south Asia, are selected to examine future projections under the doubling CO2 scenario. Projections reveal a significant increase in mean monsoon precipitation of 8% and a possible extension of the monsoon period based on the multi-model ensemble technique. Extreme excess and deficient monsoons are projected to intensify. The projected increase in precipitation could be attributed to the projected intensification of the heat low over northwest India, the trough of low pressure over the Indo-Gangetic plains, and the land–ocean pressure gradient during the establishment phase of the monsoon. The intensification of these pressure systems could be attributed to the decline in winter/spring snowfall. Furthermore, a decrease of winter snowfall over western Eurasia is also projected along with an increase of winter snowfall over Siberia/eastern Eurasia. This projected dipole snow configuration during winter could imply changes in mid-latitude circulation conducive to subsequent summer monsoon precipitation activity. An increase in precipitable water of 12–16% is projected over major parts of India. A maximum increase of about 20–24% is found over the Arabian Peninsula, adjoining regions of Pakistan, northwest India and Nepal. Although the projected summer monsoon circulation appears to weaken, the projected anomalous flow over the Bay of Bengal (Arabian Sea) will support oceanic moisture convergence towards the southern parts of India and Sri Lanka (northwest India and adjoining regions). The ENSO-Monsoon relationship is also projected to weaken.  相似文献   
7.
8.
Summary ?This study presents the monthly climatology and variability of the INSAT (Indian National Satellite) derived snow cover estimates over the western Himalayan region. The winter/spring snow estimates over the region are related to the subsequent summer monsoon rainfall over India. The NCEP/NCAR data are used to understand the physical mechanism of the snow-monsoon links. 15 years (1986–2000) of recent data are utilized to investigate these features in the present global warming environment. Results reveal that the spring snow cover area has been declining and snow has been melting faster from winter to spring after 1993. Connections between snow cover estimates and Indian monsoon rainfall (IMR) show that spring snow cover area is negatively related with maximum during May, while snow melt during the February–May period is positively related with subsequent IMR, implying that smaller snow cover area during May and faster snow melt from winter to spring is conducive for good monsoon activity over India. NCEP/NCAR data further shows that the heat low over northwest India and the monsoon circulation over the Indian subcontinent, in particular the cross-equatorial flow, during May are intensified (weakened) when the snow cover area during May is smaller (extensive) and snow melts faster (slower) during the February–May period. The well-documented negative relationship between winter snow and summer rainfall seems to have altered recently and changed to a positive relationship. The changes observed in snow cover extent and snow depth due to global warming may be a possible cause for the weakening winter snow–IMR relationship. Received January 15, 2002; revised May 5, 2002; accepted June 23, 2002  相似文献   
9.
Summary The relationship of summer monsoon over India with the Indian Ocean Dipole Mode has been investigated applying simple statistical techniques. While a long time series of 132 years based on 1871–2002 for both summer monsoon rainfall as well as dipole mode index has been used in this study, the NCEP–NCAR reanalysis data (1948–2002) are used to examine the circulation features associated with the extreme dipole and monsoon phases. These flow patterns bring out the dynamics of the dipole – monsoon relationship. Lead/lag correlations between the dipole mode index and the Indian monsoon rainfall are computed. Results reveal that numerically the relationship is stronger following the monsoon. The lower troposphere flow patterns at 850 hPa associated with the extreme phases of the dipole and monsoon are consistent with the correlation analysis. Further a strong (weak) summer monsoon favours the development of the negative (positive) dipole event in autumn. The sliding correlations between Indian monsoon rainfall and the dipole mode index suggest that the impact of monsoon over dipole is weakening after 1960s. This weakening relationship has been evidenced by the composites of sea-surface temperature anomalies and circulation patterns. All the above analysis suggests that the summer monsoon has more influence on the dipole mode than vice-a-versa.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号