首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地质学   9篇
  2021年   1篇
  2017年   1篇
  2014年   2篇
  2013年   3篇
  2006年   1篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 171 毫秒
1
1.
Geotechnical and Geological Engineering - The effects of diameter and location of drain pipes on the uplift force and exit hydraulic gradient for a gravity dam are investigated. A numerical model...  相似文献   
2.
The seepage beneath a concrete dam causes an upward force acting to the dam foundation, known as uplift. Previous literatures show that implementation of drainage wells in gravity dam foundations causes a reduction in uplift forces. The main aim of these wells is to drain excess seepage flow bypassed from the cutoff wall and to reduce the uplift force. The location of the drains in the foundation plays a key role in reducing the pressure. In the present study, effect of the location of drain pipes from the upstream face of the dam (s), space among them (n) and drain’s diameter (d) in uplift force reduction is investigated. The processes of the study have been performed by the Seep/w software based on the finite element method. Results show that the use of a drain system reduced the uplift forces developed beneath the floor of the structure. If the drain is located close to the face of the dam, it may not be effective in reducing the uplift. On the other hand, shifting it too much away from the upstream face of the dam will lead to increased total uplift. It is, therefore, desirable to find out the location of the drain such that the total uplift is optimum. Optimum location of the vertical drains is not fixed, and by increasing vertical drains distances from each other and also decreasing drain diameter, optimum location would be shifted to the downstream. For example introduction of system of pipe drains to the floor of gravity dams reduced the uplift force acting on the floor by up to 80% for d/l = 0.0004, n/l = 0.024 and s/l = 0.08. This reduction in uplift becomes up to 65% for d/l = 0.0004, n/l = 0.048 and s/l = 0.12. The best location of the drain is such that the total uplift is minimum and this is presented in both design charts and algebraic equations in this study.  相似文献   
3.
Slope stability analysis during rapid drawdown is an important consideration in the design of embankment dams. During rapid drawdown, the stabilizing effect of the water on the upstream face is lost, but the pore water pressures within the embankment may remain high. As a result, the stability of the upstream face of the dam can be much reduced. Installing horizontal drains is a very efficient and cost-effective method for reducing the pore water pressure and increasing the stability of the upstream slope. The theory of horizontal drains in the upstream shell of earth dams is well established, but there seems to be limited resources available for the design of this type of horizontal drains. Hence, this study is focused on the performance of horizontal drains in the upstream shell of the slope of earth dams on the upstream slope stability during rapid drawdown conditions. The parametric study has been conducted on the variation of horizontal drain parameters such as the number of drains, their length, and their location. In this study, ten scenarios were analyzed based on different drainage configurations and the performance of each scenario is investigated on the seepage and the upstream slope stability during rapid drawdown conditions using finite element and limit equilibrium methods. The results demonstrated that the stability of the upstream slope during rapid drawdown conditions increases by increasing the number of drains. The length of drains extending further from its intersection with the critical failure surface does not provide any significant change in the factor of safety. Finally, the study also found that installing drains in the lower region of the upstream shell of earth dams gives more stability than those installed in higher elevations.  相似文献   
4.
Compound broad-crested weir is a typical hydraulic structure that provides flow control and measurements at different flow depths. Compound broad-crested weir mainly consists of two sections; first, relatively small inner rectangular section for measuring low flows, and a wide rectangular section at higher flow depths. In this paper, series of laboratory experiments was performed to investigate the potential effects of length of crest in flow direction, and step height of broad-crested weir of rectangular compound cross-section on the discharge coefficient. For this purpose, 15 different physical models of broad-crested weirs with rectangular compound cross-sections were tested for a wide range of discharge values. The results of examination for computing discharge coefficient were yielded by using multiple regression equations based on the dimensional analysis. Then, the results obtained were also compared with genetic programming (GP) and artificial neural network (ANN) techniques to investigate the applicability, ability, and accuracy of these procedures. Comparison of results from the GP and ANN procedures clearly indicates that the ANN technique is less efficient in comparison with the GP algorithm, for the determination of discharge coefficient. To examine the accuracy of the results yielded from the GP and ANN procedures, two performance indicators (determination coefficient (R 2) and root mean square error (RMSE)) were used. The comparison test of results clearly shows that the implementation of GP technique sound satisfactory regarding the performance indicators (R 2?=?0.952 and RMSE?=?0.065) with less deviation from the numerical values.  相似文献   
5.
With long-term use of sewage waste, heavy metals can accumulate to phytotoxic levels and resulted in reduced plant growth and/or enhanced metal concentrations in plants, as a result food chain. If these metals penetrate too rapidly in a particular soil, especially with high water table, they can pollute ground water supplies. The aim of this research is prevention of movement of waste water-borne heavy metals in soils of southern parts of Tehran. These waste waters are used for irrigation of agricultural lands at southern regions since many years ago. For this purpose, 6 soil samples from southern parts of Tehran city and 2 ones from Zanjan city without lime and organic matter were selected. In laboratory, sorption capacities of the soils for Ni, Cd and Pb were compared with those of calcite, Nabentonite, zeolite, illite and hematite amendments. The method was carried out by equilibration of known quantities of these adsorbents and soils with solutions containing these elements. The results showed that among the 5 amendments, calcite and Na-bentonite had the greatest sorption percentages of the 3 elements and illite had the least one. The retention capacity of calcite and Na-bentonite for Cd was highest in all 8 soils. However, retention capacities of these 2 minerals for Pb and Ni were higher than those of loamy soils without lime and organic matter and also sandy soils. Because of abundance and low price of calcite, this amendment is preferred to Na-bentonite. Therefore, calcite is recommended for adding to soils with low sorption capacity of Ni, Cd and Pb.  相似文献   
6.
The reuse of nutrients and organic matter in wastewater sludge via on agricultural lands application is a desirable goal. However, trace or heavy metals present in sludge pose the risk of human or phytotoxicity from land application. The aim of this research is possibility of ground water pollution of south of Tehran because of ten years irrigation with Ni, Cd and Pb borne waste water. For this purpose, 6 soil samples from southern parts of Tehran city and 2 ones from Zanjan city without lime and organic matter were selected. The soils differed in their texture from sandy to clayey. Each soil sample in duplicate and uniformly packed into PVC columns. Soil samples were irrigated with Cd, Pb and Ni-added wastewater. After irrigating, the columns were cut and the soils separated from sectioned pieces and their heavy metal concentrations (Pb, Cd and Ni) were measured by atomic absorption spectrophotometer by use of HNO3 4N solution. Because of high sorption capacity of these elements by soils, these metals were accumulated in surface layer of the soils. Movement in the soils without lime and organic matter were as low as other samples. Ni has had the most accumulation or the least vertical movement, and Pb the opposite ones.  相似文献   
7.
Solution of Laplace’s equation can be done by iteration methods likes Jacobi, Gauss–Seidel, and successive over-relaxation (SOR). There is no new knowledge about the relaxation coefficient (ω) in SOR method. In this paper, we used SOR for solving Laplace’s differential equation with emphasis to obtaining the optimum (minimum) number of iterations with variations of the relaxation coefficient (ω). For this purpose, a code in FORTRAN language has been written to show the solution of a set of equations and its number of iterations. The results demonstrate that the optimum value of ω with minimum iterations is achieved between 1.7 and 1.9. Also, with increasing β?=??x/?y from 0.25 to 10, the number of iterations reduced and the optimum value is obtained for β?=?2.  相似文献   
8.
Carbon dioxide is known as a hazardous material with acidic property that can be found as impurity in natural gas reservoirs with a broad range of 2 up to 40 %. Therefore, many efforts have been directed to remove and separate carbon dioxide from methane to prevent corrosion problems as well as improving the natural gas energy content. In this study, two molecular sieves, silicoaluminophosphate-34 (SAPO-34) zeotype and T-type zeolite, were synthesized by the hydrothermal method for the comparative study of adsorptive separation of carbon dioxide from methane. The synthesized adsorbents were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Brunner–Emmett–Teller techniques. These characterization tests confirmed formation of both materials with acceptable crystallinity. Both adsorbents were tested in equilibrium adsorption experiments in order to evaluate maximum capacity and adsorption affinity. Adsorption capacity of carbon dioxide and methane on SAPO-34 and zeolite T were measured in a pressure range of 0.1–2.0 MPa and temperature of 288, 298, and 308 K and fitted with the Sips and Langmuir isotherm models. The ideal selectivity of CO2/CH4 was determined for SAPO-34 and zeolite T at the studied pressures and temperatures, indicating that the molecular sieves can be properly used for CO2–CH4 separation or CO2 capturing from natural gas.  相似文献   
9.
Some facility for the prevention of piping, reducing exit gradient and seepage amount under hydraulic structures, is construction of cutoff wall and drain. Therefore, this study compares the efficiency of cutoff wall on some design parameters in an assumed diversion dam cross-section. For this purpose, different placements of cutoff wall with various angle of inclination were used in the dam foundation. Results of this study showed that minimum uplift pressure happens when cut off wall is in the heel (upstream) of the dam. With fixing of longitudinal cut off wall placement, inclination of cutoff wall respect to the vertical position, results in reducing of uplift pressure. Effect of inclination of cutoff wall in upstream of the dam; respect to vertical position, in reducing of uplift pressure is very high.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号