首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
测绘学   1篇
地球物理   2篇
地质学   4篇
自然地理   1篇
  2022年   1篇
  2016年   2篇
  2015年   1篇
  2011年   1篇
  2008年   2篇
  1989年   1篇
排序方式: 共有8条查询结果,搜索用时 220 毫秒
1
1.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   

2.
An improved sensitive automated method for the determination of mercury in geological materials by cold vapor atomic absorption has been developed. Sample is digested with nitric and hydrochloric acids at low heat. Mercuric ions in the digested sample solution are reduced to elemental mercury by stannous chloride. The gaseous mercury separated from the solution is swept by a stream of argon into the absorption cell of an LDC/Milton Roy Mercury Monitor where the atomic absorption at 253.7 nm is measured. The precision of the method is 2.7% r.s.d., and the detection limit is 1 ppb. The results on 53 international geochemical reference samples are presented.  相似文献   
3.
Accelerated soil erosion, high sediment yields, floods and debris flow are serious problems in many areas of Iran, and in particular in the Golestan dam watershed, which is the area that was investigated in this study. Accurate land use and land cover (LULC) maps can be effective tools to help soil erosion control efforts. The principal objective of this research was to propose a new protocol for LULC classification for large areas based on readily available ancillary information and analysis of three single date Landsat ETM+ images, and to demonstrate that successful mapping depends on more than just analysis of reflectance values. In this research, it was found that incorporating climatic and topographic conditions helped delineate what was otherwise overlapping information. This study determined that a late summer Landsat ETM+ image yields the best results with an overall accuracy of 95%, while a spring image yields the poorest accuracy (82%). A summer image yields an intermediate accuracy of 92%. In future studies where funding is limited to obtaining one image, late summer images would be most suitable for LULC mapping. The analysis as presented in this paper could also be done with satellite images taken at different times of the season. It may be, particularly for other climatic zones, that there is a better time of season for image acquisition that would present more information.  相似文献   
4.
In the recent centuries, one of the most important ongoing challenges is energy consumption and its environmental impacts. As far as agriculture is concerned, it has a key role in the world economics and a great amount of energy from different sources is used in this sector. Since researchers have reported a high degree of inefficiency in developing countries, it is necessary for the modern management of cropping systems to have all factors (economics, energy and environment) in the decision-making process simultaneously. Therefore, the aim of this study is to apply Multi-Objective Particle Swarm Optimization (MOPSO) to analyze management system of an agricultural production. As well as MOPSO, two other optimization algorithm were used for comparing the results. Eventually, Taguchi method with metrics analysis was used to tune the algorithms’ parameters and choose the best algorithms. Watermelon production in Kerman province was considered as a case study. On average, the three multi-objective evolutionary algorithms could reduce about 30 % of the average Greenhouse Gas (GHG) emissions in watermelon production although as well as this reduction, output energy and benefit cost ratio were increased about 20 and 30 %, respectively. Also, the metrics comparison analysis determined that MOPSO provided better modeling and optimization results.  相似文献   
5.
The Iranian Soil and Water Research Institute has been involved in mapping the soils of Iran and classifying landforms for the last 60 years. However, the accuracy of traditional landform maps is very low (about 55%). To date, aerial photographs and topographic maps have been used for landform classification studies. The principal objective of this research is to propose a quantitative approach for landform classification based on a 10-m resolution digital elevation model (DEM) and some use of an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image. In order to extract and identify the various landforms, slope, elevation range, and stream network pattern were used as basic identifying parameters. These are extractable from a DEM. Further, ASTER images were required to identify the general outline shape of a landform type and the presence or absence of gravel. This study encompassed a relatively large watershed of 451 183 ha with a total elevation difference of 2445 m and a variety of landforms from flat River Alluvial Plains to steep mountains. Classification accuracy ranged from 91.8 to 99.6% with an average of 96.7% based upon extensive ground-truthing. Since similar digital and ASTER image information is available for Iran, an accurate landform map can now be produced for the whole country. The main advantages of this approach are accuracy, lower demands on time and funds for field work and ready availability of required data for many regions of the world.  相似文献   
6.
The Mesozoic Bazman granitoids are located in Sistan and Baluchestan province, southeastern Iran. Geology of the study area consists of Carboniferous shale, sandstone, and limestone and Permian siltstone, shale, sandstone, limestone, and dolomite that were intruded by the Bazman granitoids. These granitoids include various phases of granite, granodiorite, quartz‐monzodiorite, monzodiorite, diorite, and gabbro. They are metaluminous to slightly peraluminous, reduced, calc‐alkaline and I‐type, and display geochemical characteristics of continental margin (ensialic) granitoids. In this paper, field, petrography, and geochemical data were used to discriminate the Bazman granitoids either as productive or barren granitoids. Although there are a few skarn‐related mineral occurrences adjacent to the Bazman granitoids, most exposed intrusions are not hydrothermally altered and mineralized. Rb/Sr, Zr/Hf, and K/Rb ratios indicate that the granitic magmas that formed most of the Bazman granitoids indicate that they are moderately evolved and have generally not undergone post‐magmatic hydrothermal activity. The Sm/Eu and Rb/Ba ratios and the concentrations of Rb, Ba, and Sr within the aforementioned granitoids show that the rocks are similar to the averages of granitoids devoid of Li, Be, U, Sn, W, and Ta deposits. The I‐type arc characteristics and other geochemical features of the Bazman granitoids show that they are not typical of parental magmas to Sn, W, Mo, and Zn mineralization, but are mainly fertile for Cu and Fe (Au) skarn‐related granitoids.  相似文献   
7.
8.
Geotechnical and Geological Engineering - The Leeb hardness test is a non-destructive and portable technique that can be used both in the laboratory and in-field applications. The main purpose of...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号