首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
大气科学   1篇
地球物理   1篇
地质学   1篇
海洋学   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2002年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
A comprehensive analysis of velocity data from subsurface floats in the northwestern tropical Atlantic at two depth layers is presented: one representing the Antarctic Intermediate Water (AAIW, pressure range 600–1050 dbar), the other the upper North Atlantic Deep Water (uNADW, pressure range 1200–2050 dbar). New data from three independent research programs are combined with previously available data to achieve blanket coverage in space for the AAIW layer, while coverage in the uNADW remains more intermittent. Results from the AAIW mainly confirm previous studies on the mean flow, namely the equatorial zonal and the boundary currents, but clarify details on pathways, mostly by virtue of the spatial data coverage that sets float observations apart from e.g. shipborne or mooring observations. Mean transports in each of five zonal equatorial current bands is found to be between 2.7 and 4.5 Sv. Pathways carrying AAIW northward beyond the North Brazil Undercurrent are clearly visible in the mean velocity field, in particular a northward transport of 3.7 Sv across 16°N between the Antilles islands and the Mid-Atlantic Ridge. New maps of Lagrangian eddy kinetic energy and integral time scales are presented to quantify mesoscale activity. For the uNADW, mean flow and mesoscale properties are discussed as data availability allows. Trajectories in the uNADW east of the Lesser Antilles reveal interactions between the Deep Western Boundary Current (DWBC) and the basin interior, which can explain recent hydrographic observations of changes in composition of DWBC water along its southward flow.  相似文献   
2.
In spite of the fundamental role the Atlantic Meridional Overturning Circulation (AMOC) plays for global climate stability, no direct current measurement of the Denmark Strait Overflow, which is the densest part of the AMOC, has been available until recently that resolve the cross-stream structure at the sill for long periods. Since 1999, an array of bottom-mounted acoustic instruments measuring current velocity and bottom-to-surface acoustic travel times was deployed at the sill. Here, the optimization of the array configuration based on a numerical overflow model is discussed. The simulation proves that more than 80% of the dense water transport variability is captured by two to three acoustic current profilers (ADCPs). The results are compared with time series from ADCPs and Inverted Echo Sounders deployed from 1999 to 2003, confirming that the dense overflow plume can be reliably measured by bottom-mounted instruments and that the overflow is largely geostrophically balanced at the sill.  相似文献   
3.
Glider observations of temperature, salinity and vertically averaged velocity in the Ionian Sea (Eastern Mediterranean Sea), made in the period October 2004–December 2004, were assimilated into an operational forecasting model together with other in situ and satellite observations. The study area has a high spatial and temporal variability of near surface dynamics, characterized by the entrance of the Atlantic Ionian Stream (AIS) into the Northern Ionian Sea. The impact of glider observations on the estimation of the circulation is studied, and it is found that their assimilation locally improves the prediction of temperature, salinity, velocity and surface elevation fields. However, only the assimilation of temperature and salinity together with the vertically averaged velocity improves the forecast of all observed parameters. It is also found that glider observations rapidly impact the analyses even remotely, and the remote impacts on the analyses remain several months after the presence of the glider. The study emphasizes the importance of assimilating as much as possible all available information from gliders, especially in dynamically complex areas.  相似文献   
4.
This study aims to express the relationships between Schmidt rebound number (N) with unconfined compressive strength (UCS) and Young's modulus (Et) of the gypsum by empirical equations. As known, the Schmidt hammer has been used worldwide as an index test for a quick rock strength and deformability characterisation due to its rapidity and easiness in execution, simplicity, portability, low cost and nondestructiveness. In this study, gypsum samples have been collected from various locations in the Miocene-aged gypsum of Sivas Basin and tested. The tests include the determination of Schmidt hammer rebound number (N), tangent Young's modulus (Et) and unconfined compressive strength. Finally, obtained parameters were correlated and regression equations were established among Schmidt hammer rebound hardness, tangent Young's modulus and unconfined compressive strength, presenting high coefficients of correlation. It appears that there is a possibility of estimating unconfined compressive strength and Young's modulus of gypsum, from their Schmidt hammer rebound number by using the proposed empirical relationships of UCS=exp(0.818+0.059N) and Et=exp(1.146+0.054N). However, the equations must be used only for the gypsum with an acceptable accuracy, especially at the preliminary stage of designing a structure. Finally, by using the obtained Schmidt hammer rebound number from this study, unconfined compressive strength was calculated and compared with the calculated value from different empirical equations proposed by different authors. It can be said that it is impossible to obtain only one relation for all types of the rocks.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号