首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
  国内免费   1篇
大气科学   4篇
地球物理   12篇
地质学   8篇
海洋学   7篇
天文学   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2017年   2篇
  2016年   4篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2000年   1篇
  1999年   4篇
  1995年   1篇
  1991年   1篇
  1989年   3篇
排序方式: 共有32条查询结果,搜索用时 19 毫秒
1.
A method to extract geostrophic current in the daily mean HF radar data in the Kuroshio upstream region is established by comparison with geostrophic velocity determined from the along-track altimetry data. The estimated Ekman current in the HF velocity is 1.2% (1.5%) and 48° (38°)-clockwise rotated with respect to the daily mean wind in (outside) the Kuroshio. Furthermore, additional temporal smoothing is found necessary to remove residual ageostrophic currents such as the inertial oscillation. After removal of the ageostrophic components, the HF geostrophic velocity agrees well with that from the altimetry data with rms difference 0.14 (0.12) m/s in (outside) the Kuroshio.  相似文献   
2.
3.
We analyzed Rb-Sr-Nd isotope ratios of mineral dust in total aerosol load collected with rainwater continuously from 1998 to 2006 at the summit of Mt. Sefuri, northern Kyushu, southwestern Japan. During this period, the total mass of the dust generally increased in late winter, peaked in early spring, and then decreased.87Sr/86Sr in atmospheric mineral dust varied from 0.7096 to 0.7180, and εNd(0)CHUR from −19.9 to −3.5. During heavy deposition periods, the dust had high 87Sr/86Sr isotope ratios and low to middle εNd(0)CHUR values, respectively. These compositions are comparable to those of sand and loess in arid areas of Northeast China, Takla Makan and Western Beijing. Such particles were transported by westerlies from those areas to northern Kyushu in winter and spring. In summer and autumn, the isotopic compositions of the dust varied greatly; however, during light deposition periods, the Sr isotope composition was low. In these seasons, the contributions to the dust from Japanese soils and volcanic ash, transported by southern winds, were relatively larger than in winter and spring because of decreased mineral dust particle transport from the continent. Nevertheless, fine sandy desert particles and loess in general accounted for most mineral dust deposition in northern Kyushu year-round, even in summer. Local soils derived from weathered granite and volcanic ash were minor components only.The net mass of water-insoluble inorganic matter in the collected mineral dust fluctuated from year-to-year; deposition on Mt. Sefuri was relatively large before 2001, decreased from 2002 to 2005, and increased greatly in spring 2006. These year-to-year differences probably reflected changes in the strength of the westerlies and in climate conditions in the arid source areas.  相似文献   
4.
A new method was developed to compare the classifications of different kind of data maps based on the self-organizing map (SOM) analysis. The surface current maps of the northern coast of Ishigaki and Iriomote Islands, East China Sea, observed by high-frequency (HF) radar were classified by SOM. Winds, sea surface temperatures (SST), and reanalysis data were also classified by SOM. The optimum area for classification was determined objectively by the new method, which relates these patterns to HF radar current patterns. We found two typical surface patterns: the first was that northeastward flows are dominant in the observation area and the second was that a clockwise eddy was also dominant in this area. The southwestward wind pattern was strongly related to the dominant clockwise eddy pattern of the HF radar current field.  相似文献   
5.
6.
Vertical and temporal variations of three-dimensional wind velocity associated with an upper-tropospheric cold vortex-tropopause funnel system were observed by an MST radar in Japan (the MU radar). Marked changes of vertical velocity and horizontal wind direction were found between the inside and outside of the cold vortex. The vertical velocity activity outside the vortex was asymmetric; it was most active in a sector before the vortex. Unsaturated internal gravity waves in their generation stage contribute predominantly to the vertical velocity activity, suggesting that tropospheric occluded cyclones may be a possible source of middle-atmospheric gravity waves through the geostrophic adjustment process.  相似文献   
7.
Marked wavelike variations of the lower stratospheric wind observed on 7–10 May, 1985 by an MST radar in Japan (by the MU radar) are analyzed assuming that they are induced by monochromatic internal inertio-gravity waves. These variations are mainly composed of two modes (periods: 22 and 24 hours), both of which have zonal phase velocities (C X ) slower than the mean westerly wind (). A statistical analysis of the zonal phase velocity shows thatC X above andC X below the tropopause jet stream, which is considered to be a vivid proof of wave selection due to the tropospheric mean flow and upward wave emission from the tropopause jet. A comparison between the MU radar results and routine meteorological observations leads to the conclusion that the marked waves appear when the jet stream takes a maximum wind speed.  相似文献   
8.
The Higo terrane in west-central Kyushu Island, southwest Japan consists from north to south of the Manotani, Higo and Ryuhozan metamorphic complexes, which are intruded by the Higo plutonic complex (Miyanohara tonalite and Shiraishino granodiorite).The Higo and Manotani metamorphic complexes indicate an imbricate crustal section in which a sequence of metamorphic rocks with increasing metamorphic grade from high (northern part) to low (southern part) structural levels is exposed. The metamorphic rocks in these complexes can be divided into five metamorphic zones (zone A to zone E) from top to base (i.e., from north to south) on the basis of mineral parageneses of pelitic rocks. Greenschist-facies mineral assemblages in zone A (the Manotani metamorphic complex) give way to amphibolite-facies assemblages in zones B, C and D, which in turn are replaced by granulite-facies assemblages in zone E of the Higo metamorphic complex. The highest-grade part of the complex (zone E) indicates peak P–T conditions of ca. 720 MPa and ca. 870 °C. In addition highly aluminous Spr-bearing granulites and related high-temperature metamorphic rocks occur as blocks in peridotite intrusions and show UHT-metamorphic conditions of ca. 900 MPa and ca. 950 °C. The prograde and retrograde P–T evolution paths of the Higo and Manotani metamorphic complexes are estimated using reaction textures, mineral inclusion analyses and mineral chemistries, especially in zones A and D, which show a clockwise P–T path from Lws-including Pmp–Act field to Act–Chl–Epi field in zone A and St–Ky field to And field through Sil field in zone D.The Higo metamorphic complex has been traditionally considered to be the western-end of the Ryoke metamorphic belt in the Japanese Islands or part of the Kurosegawa–Paleo Ryoke terrane in south-west Japan. However, recent detailed studies including Permo–Triassic age (ca. 250 Ma) determinations from this complex indicate a close relationship with the high-grade metamorphic terranes in eastern-most Asia (e.g., north Dabie terrane) with similar metamorphic and igneous characteristics, protolith assembly, and metamorphic and igneous ages. The north Dabie high-grade terrane as a collisional metamorphic zone between the North China and the South China cratons could be extended to the N-NE along the transcurrent fault (Tan-Lu Fault) as the Sulu belt in Shandong Peninsula and the Imjingang belt in Korean Peninsula. The Higo and Manotani metamorphic complexes as well as the Hida–Oki terrane in Japan would also have belonged to this type of collisional terrane and then experienced a top-to-the-south displacement with forming a regional nappe structure before the intrusion of younger Shiraishino granodiorite (ca. 120 Ma).  相似文献   
9.
Abstract Miyanohara tonalite occurs in the middle part of the Higo metamorphic belt in the central Kyushu, Southwest Japan. This tonalite intrudes into early Permian Ryuhozan metamorphic rocks in the south and is intruded by Cretaceous Shiraishino granodiorite in the north. The Miyanohara tonalite yielded three mineral ages: (i) 110–100 Ma for Sm–Nd and Rb–Sr internal isochrons and for K–Ar hornblende; (ii) 183 Ma for Sm–Nd internal isochron; and (iii) 211 Ma for Sm–Nd internal isochron. The ages of 110–100 Ma may indicate cooling age due to the thermal effect of the Shiraishino granodiorite intrusion. The ages of 183 Ma and 211 Ma are consistent with timing of intrusion of the Miyanohara tonalite based on geologic constraints. The hornblende in the sample which gave 183 Ma shows discontinuous zoning under microscope, whereas the one which gave 211 Ma does not show zonal structure. These mineralogical features suggest that the 183 Ma sample has suffered severely from later tectonothermal effect compared with the 211 Ma sample. Therefore, the age of 211 Ma is regarded as near crystallization age for the Miyanohara tonalite. The magmatic process, geochronology and initial Sr and Nd isotope ratios for the Miyanohara tonalite are similar to those of early Jurassic granites from the Outer Plutonic Zone of the Hida belt that constitutes a marginal part of east Asia before the opening of the Japan Sea. Intrusion of the Miyanohara tonalite is considered to have taken place in the active continental margin during the late Triassic.  相似文献   
10.
Soil pipes, continuous macropores parallel to the soil surface, are an important factor in hillslope hydrological processes. However, the water flow dynamics in soil pipes, especially closed soil pipes, are not well understood. In this study, the water and air dynamics within closed soil pipes have been investigated in a bench‐scale laboratory experiment by using a soil box with an artificial acrylic soil pipe. In order to grasp the state of water and air within the soil pipe, we directly measured the existing soil pipe flow and air pressure in the soil pipe. The laboratory experiment showed that air in the soil pipe had an important role in the water flow in the closed soil pipe. When air entrapment occurred in the soil pipe before the soil matrix around the soil pipe was saturated with water, water intrusion in the soil pipe was prevented by air entrapped in the pipe, which inhibited the soil pipe flow. This air entrapment in the soil pipe was controlled by the soil water and air flow. Moreover, after the soil pipe flow started, the soil pipe was not filled completely with water even when the soil pipe was completely submerged under the groundwater table. The entrapped air in the soil pipe prevented further water intrusion in the soil pipe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号