首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地质学   6篇
  2022年   1篇
  2018年   1篇
  2013年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有6条查询结果,搜索用时 125 毫秒
1
1.
The review paper provides an updated account of the previous and recently published records concerning the palaeobiology and the geology of the Talcher Basin of Orissa State, India. We conclude that fossil floral species in this basin originated in the earliest Permian Talchir Formation and evolved and diversified through the Karharbari Fm., Barakar Fm., Barren Measures Fm. and the uppermost Kamthi Fm. (Late Permian–Triassic). The megaflora and the palynology of the different formations of the basin are also discussed briefly. The geological setting of the basin along with the status of different formations (especially the Kamthi Formation) has been redefined. The post‐Barakar Fm. rocks, earlier retained in the Raniganj/Kamthi, Panchet and Mahadeva formations in this basin, have been critically assessed and redefined as the Lower and Upper Kamthi formations of Late Permian and Triassic ages, respectively. Accordingly, the geological map of the basin has been modified. Permian deposits (particularly the Barakar and the lower Kamthi formations) not only have the best preserved flora but also possess the highest diversity, whereas the upper Kamthi Triassic sediments have a meagre number of taxa. The plant diversity of the basin has been discussed in detail to interpret the development of the flora, evolutionary trends and palaeoenvironments of the basin. The patchy Gangamopteris vegetation of the Talchir glacial phase has ultimately evolved and diversified through time (Karharbari Fm. to Lower Kamthi Fm.) and gave rise to the thick dense swampy forests consisting of large Glossopteris trees and other shade‐loving under‐storied pteridophytes. Several groups of plants including spores and pollen have disappeared in a ladder pattern during the Permian–Triassic interval (Lower Kamthi–Upper Kamthi Fm.) and, similarly, in steps, many new fore‐runners appeared in the Upper Kamthi Formation. Records of marine acritarchs and ichnofossils in this basin at various Permian–Triassic levels demonstrate that there were marine influences. These features suggest a paralic (coastal marine to deltaic) mode of origin of the coal beds and associated sediments in the basin. The present study also advocates the continued survival of plants, rather than a mass extinction near the vicinity of the Permian–Triassic (P–T) boundary in this basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
2.
Mishra  Manoranjan  Kar  Dipika  Debnath  Manasi  Sahu  Netrananda  Goswami  Shreerup 《Natural Hazards》2022,110(3):2381-2395

The tropical cyclones are very destructive during landfall, generating high wind speeds, heavy intensive rainfall, and severe storm surges with huge coastal inundations that have massive socioeconomic and ecological catastrophic effects on human beings and the economic well-being. The sizable ecological effects of cyclonic storms cannot be ignored because of the uncertainty of impact, intensity induced by a warming ocean, and sea level rise. The Super Cyclonic Storm Amphan which falls under the category five classifications under the scheme of the India Meteorological Department (IMD), on the basis the maximum sustained wind speeds gusting up to 168 km/h affected parts of West Bengal and Odisha in India, and south-west Bangladesh between May 16 and 20, 2020. In this work, we have focused on the coastal districts of Kendrapada, Bhadrak, Balasore in Odisha, Purba Medinipur, and South Twenty-Four Parganas in West Bengal, India and, Khulna, Barisal division of Bangladesh that have been seriously affected by the Super Cyclonic Storm Amphan. The objective of the study is to analyze the eco-physical assessment of tropical cyclone Amphan using geospatial technology. Therefore, shoreline change detection and enhance vegetation index have been used in this research work to systematically analyze the eco-physical impact parameters of Cyclonic Storm Amphan using ortho-rectified Landsat 8/OLI imagery and MODIS dataset of USGS with high spatial resolutions of 30–500 m. The result highlights that about 60.33% of the total transects of the study area was eroded, but only 24.99% of the total transects experienced accretion, and 14.68% of the total transects depicted stability. The scientific study will benefit coastal managers and policymakers in formulating action plans for coastal zone management, natural resilience, and sustainable future development.

  相似文献   
3.
The present megafloral assemblage recorded from the Barakar sediments of Dholpahar section along Singda rivulet near Gopal Prasad Village in Talcher Basin comprises of equisetaceous stems, Gangamopteris buriadica, Palaeovittaria kurzii and 19 species of the genus Glossopteris. Record of Gangamopteris, Palaeovittaria and many narrow mesh forms of Glosspteris viz., G. angustifolia, G. churiensis, G. communis, G. recurva, G. spatulata, G. stenoneura, G. tenuifolia, G. vulgaris and G. zeilleri from two older fossiliferous horizons demonstrates that these fossils were preserved during Lower Barakar sedimentation. The report of middle and broad mesh forms of Glossopteris viz., G. barakarensis, G. browniana, G. indica, G. intermittens, G. karharbariensis, G. nakkarea, G. oldhamii, G. taeniensis and G. retifera in the youngest fossiliferous horizons reveals that these fossils were preserved during the deposition of Upper Barakar sediments. The continuation of some of the Karharbari plant fossils in the early phase of Barakar Formation and their disappearance in the flora of Late Barakar suggests a shift in the climatic setup. Palaeoclimate and palaeovegetation of this area are also summarised in this study. Moreover, the fossil assemblages of different fossiliferous beds of Dholpahar section demonstrate the evolution of midrib and meshes in different reticulate leaves.  相似文献   
4.
Palaeobotany of Gondwana basins of Orissa State, India: A bird's eye view   总被引:1,自引:0,他引:1  
Gondwana basins of Orissa State constitute a major part of the Mahanadi Master Basin. These Gondwana sediments, ranging from Asselian to Albian in age, contain remnants of three basic floral assemblages i.e. Glossopteris Assemblage, Dicroidium Assemblage and Ptilophyllum Assemblage which can be recognized through the Permian, Triassic and Early Cretaceous, respectively. The megafloral assemblages of different basins of this state are discussed briefly. This report mainly deals with the plant species diversification in different lithological formations and the development of flora in the Gondwana basins of Orissa. A number of successive megafloras are recognized. Among those, leaves are the dominant part of the preserved flora, followed by fruits and roots. No wood parts are preserved in the major basins. These pre-angiospermic floras have been systematically analyzed to depict the evolutionary trends, and palaeofloristics of these basins. The distribution of plant fossils in different formations of these basins depicts provincialism in Gondwana flora within the Orissa.  相似文献   
5.
6.
The Ib-River Coalfield in Orissa State is a part of Mahanadi Master Basin. Recent extensive investigations were conducted in this Coalfield to locate fossiliferous beds in the Lower Gondwana deposits and as a result a large cache of plant fossils were recovered from Lower Permian sediments (Barakar Formation) exposed in Jurabaga and Lajkura Collieries. The complete flora includes 23 genera representing nine orders viz., Lycopodiales, Equisetales, Sphenophyllales, Filicales, Cordaitales, Coniferales, Ginkgoales, Cycadales and Glossopteridales. Only the Cordaitales, represented by four genera i.e., Noeggerathiopsis, Cordaites, Euryphyllum and Kawizophyllum are discussed in this paper. Cordaitalean leaves are described for the first time from this coalfield; the remaining plant groups will be considered in a subsequent publication. Cordaitalean leaves attributable to Noeggerathiopsis hislopii, Noeggerathiopsis minor, Euryphyllum whittianum, Euryphyllum maithyi, Kawizophyllum dunpathriensis and Cordaites sp. constitute about 13.90% (111 specimens) of the total plant assemblage collected from this Coalfield. Of the cordaitaleans, N. hislopii is most abundant (47.75%; 53 specimens) followed by E. whittianum (40.54%; 45 specimens). A summary of the distribution of Cordaitales throughout the Indian Gondwana is also presented. Floristic composition varies stratigraphically at the two Barakar exposures (Lajkura and Jurabaga Collieries). Cordaitales are preserved only in the lowermost (4th) horizon (lower floral zone). Strata in these collieries have been assigned to the lower and upper Barakar Formation based on floristic content and an Early Permian (Artinskian) age is assigned.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号