首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   2篇
地质学   1篇
天文学   4篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 312 毫秒
1
1.
Sudden short-duration decreases in cosmic ray flux, known as Forbush decreases (FDs), are mainly caused by interplanetary disturbances. A generally accepted view is that the first step of an FD is caused by a shock sheath and the second step is due to the magnetic cloud (MC) of the interplanetary coronal mass ejection (ICME). This simplistic picture does not consider several physical aspects, such as whether the complete shock sheath or MC (or only part of these) contributes to the decrease or the effect of internal structure within the shock-sheath region or MC. We present an analysis of 16 large (\({\geq}\,8 \%\)) FD events and the associated ICMEs, a majority of which show multiple steps in the FD profile. We propose a reclassification of FD events according to the number of steps observed in their respective profiles and according to the physical origin of these steps. This study determines that 13 out of 16 major events (\({\sim}\,81\%\)) can be explained completely or partially on the basis of the classic FD model. However, it cannot explain all the steps observed in these events. Our analysis clearly indicates that not only broad regions (shock sheath and MC), but also localized structures within the shock sheath and MC have a significant role in influencing the FD profile. The detailed analysis in the present work is expected to contribute toward a better understanding of the relationship between FD and ICME parameters.  相似文献   
2.
Using a simple time-lagged correlation technique, present study aims to identify the solar wind (SW) parameter, which is better associated with the ground magnetic field variations of shorter time duration near equator, during intense geomagnetic storms. It is found that out of all SW parameters, successively occurring enhancements in the SW dynamic pressure have substantial influence on the horizontal component of magnetic field at ground. Present analysis reveals a time lag of ~30–45 min between the SW pressure changes seen at L1 location and ground magnetic field variations, and hence providing a good approximation of an averaged propagation time during entire storm interval; the time lag varies with solar wind velocity. Separate study during day and nighttime suggests that the SW dynamic pressure enhancements recorded by the dayside outer magnetospheric satellite have impact on the ground horizontal magnetic field measurements near equator, irrespective of day or nighttime.  相似文献   
3.
Lava flows with preserved bases and brecciated upper crusts constitute a morphological type that differs in character from typical pahoehoe and a'a: such flows have been reported from many provinces around the world. Previous studies had referred to these flows informally as ‘pahoehoe flows with rubbly tops’, ‘broken-top pahoehoe’ and ‘rubbly pahoehoe’. Recent studies have formally applied the latter term to describe parts of the well-studied Laki flow in Iceland as well as flows from the Columbia River Basalt province. Rubbly pahoehoe flows are abundant in the upper stratigraphic formations of the Deccan Volcanic Province (DVP), and are more commonly known as simple flows. This study presents detailed observations of such flows from various parts of the DVP and discusses their implications for understanding flow emplacement. These flows, which appear to be single units at the outcrop-scale, are generally much thicker and significantly more extensive than individual pahoehoe lobes that dominate the lower formations of the Deccan stratigraphy. They are characterised by preserved, gently undulating tachylitic bases but variably disrupted crustal zones that grade into flow-top breccias. The breccias are constituted of highly vesicular and oxidised fragments of varying sizes that appear to have been derived from previously formed pahoehoe crusts. Previous work has indicated that the morphology of these flows might be related to initial inflation, accompanied by rapid volatile exsolution and an increase in effusion rate and/or viscosity with time. This agrees reasonably well with the qualitative and quantitative models of emplacement developed for the Laki flow. The abundance of such flows in the upper formations of the Deccan stratigraphy clearly hints at a significant shift in the nature of the Deccan eruptions; this could be indicative of higher eruption rates during this period. This, in turn, raises the possibility of hazardous impact on the climate during the eruption of these flows, which is also discussed in the paper.  相似文献   
4.
5.
6.
An analytic model has been developed for toroidal quarter wave (QW) oscillations in the Earth’s magnetosphere using idealistic and highly asymmetric ionospheric boundary condition. The background magnetic field is dipolar and plasma density distribution is governed by a power law 1/r m where r is the geocentric distance of any point along the field line and m is the density index. The solution thus obtained has been compared with the numerical solutions. Earlier workers had developed the analytic model for trivial 1/r 6 (m=6) type of plasma density distribution along the field line for which the period of the fundamental is twice that of corresponding half wave (i.e. toroidal oscillation in the symmetric ionospheric boundary). The present analytic model does reproduce this feature. In addition, it is seen that this ratio decreases for lower values of m. Moreover, for a particular value of m, this ratio shows a decreasing trend with increased harmonic number. The spatial characteristics of QW obtained from present analytic model are in excellent agreement with those computed numerically, thereby validating the model. The departure of frequency computed analytically from that obtained numerically is significant only for the fundamental and this departure reduces sharply with the increased harmonic number. It should be noted that there is no such departure for 1/r 6 type of plasma density distribution and spatial structures as well as frequency computed from the present analytic model match perfectly with those computed numerically.  相似文献   
7.
The Khopoli intrusion, exposed at the base of the Thakurvadi Formation of the Deccan Traps in the Western Ghats, India, is composed of olivine gabbro with 50–55 % modal olivine, 20–25 % plagioclase, 10–15 % clinopyroxene, 5–10 % low-Ca pyroxene, and <5 % Fe-Ti oxides. It represents a cumulate rock from which trapped interstitial liquid was almost completely expelled. The Khopoli olivine gabbros have high MgO (23.5–26.9 wt.%), Ni (733–883 ppm) and Cr (1,432–1,048 ppm), and low concentrations of incompatible elements including the rare earth elements (REE). The compositions of the most primitive cumulus olivine and clinopyroxene indicate that the parental magma of the Khopoli intrusion was an evolved basaltic melt (Mg# 49–58). Calculated parental melt compositions in equilibrium with clinopyroxene are moderately enriched in the light REE and show many similarities with Deccan tholeiitic basalts of the Bushe, Khandala and Thakurvadi Formations. Nd-Sr isotopic compositions of Khopoli olivine gabbros (εNdt?=??9.0 to ?12.7; 87Sr/86Sr?=?0.7088–0.7285) indicate crustal contamination. AFC modelling suggests that the Khopoli olivine gabbros were derived from a Thakurvadi or Khandala-like basaltic melt with variable degrees of crustal contamination. Unlike the commonly alkalic, pre- and post-volcanic intrusions known in the Deccan Traps, the Khopoli intrusion provides a window to the shallow subvolcanic architecture and magmatic processes associated with the main tholeiitic flood basalt sequence. Measured true density values of the Khopoli olivine gabbros are as high as 3.06 g/cm3, and such high-level olivine-rich intrusions in flood basalt provinces can also explain geophysical observations such as high gravity anomalies and high seismic velocity crustal horizons.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号