首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
大气科学   2篇
地球物理   3篇
地质学   1篇
海洋学   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2007年   1篇
  2006年   1篇
  1998年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
Sheremet  Alex  Gravois  Uriah  Shrira  Victor 《Natural Hazards》2016,84(2):471-492
The paper reports unique high-resolution observations of meteotsunami by a large array of oceanographic instruments deployed on the Atchafalaya Shelf (Louisiana, USA) in 2008 with the primary aim to study wave dissipation in muddy environments. The meteotsunami event on March 7, 2008, was caused by the passage of a cold front which was monitored by the NOAA NEXRAD radar. The observations of water surface elevations on the shelf show a highly detailed textbook picture of an undular bore (solibore) in the process of its disintegration into a train of solitons. The picture has a striking feature never reported before not only for the meteotsunamis but in other contexts of disintegration of a long-wave perturbation into a sequence of solitons as well—the persistent presence of a single soliton, well ahead of the solibore. Data analysis and simulations based on the celebrated variable-coefficient KdV (vKdV) equation first proposed by Ostrovsky and Pelinovsky (Izv Atmos Ocean Phys 11:37–41, 1975) explain the physics of this phenomenon and suggest that the formation of the lone soliton ahead of the solibore is very likely to be the result of the specific interplay of natural meteotsunami forcing and nearshore bathymetry. The analysis strongly suggests that the patterns of coexisting lone solitons and packets of cnoidal waves should be quite common for meteotsunamis. They were not observed before only because of the scarcity of high-resolution observations. The results highlight the effectiveness of the vKdV equation in providing understanding of the fundamental mechanisms of the complex natural phenomenon that would otherwise require computationally very expensive numerical models.  相似文献   
4.
We describe the procedure of field experiments aimed at measuring the vertical profiles of the vectors of a drift current with the help of quasi-Lagrangian drifters. We present the data on the vertical shears of the current at depths of 0.5–5 m obtained under the conditions of neutral stratification in the upper 5-m layer of the sea in the presence of weak and moderate winds. The correspondence of the obtained data to the concept according to which the subsurface layer of the sea is regarded as a near-wall turbulent layer with Ekman current located below is analyzed. A conclusion is made that the results of measurements correspond, on the average, to the classical concepts demonstrating both the region of logarithmic sublayer and its transition into the Ekman spiral. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 1, pp. 32–44, January–February, 2007.  相似文献   
5.
6.
7.
Interaction of a zonal jet and small-amplitude Rossby-wave turbulence is studied within the framework of the barotropic β-plane model. It is demonstrated that turbulent-laminar interaction in this case transfers energy from the wave turbulence to the laminar flow (the effect of negative friction). We derive a conclusion that, as the geophysical turbulence is determined partly by wave turbulence and none of the traditional heuristic models can adequately describe the effect of negative friction associated with wave turbulence, the application of these models to the ‘real’ ocean and atmosphere is unreliable.It is also demonstrated that, as they are affected by the turbulence, all westward jets slowly expand without strengthening. Each jet has a core, within the limits of which the velocity of the fluid is constant. In some cases, the core expands faster than the jet periphery, resulting in jumps on the profile of the flow. All eastward jets are steady irrespective of their profiles.  相似文献   
8.
Nonlinear dynamics of surface and internal waves in a stratified ocean under the influence of the Earth's rotation is discussed. Attention is focussed upon guided waves long compared to the ocean depth. The effect of rotation on linear processes is reviewed in detail as well as the existing nonlinear models describing weakly and strongly nonlinear dynamics of long waves. The influence of rotation on small-scale waves and two-dimensional effects are also briefly considered. Some estimates of the influence of the Earth's rotation on the parameters of real oceanic waves are presented and related to observational and numerical data.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号