首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地球物理   5篇
地质学   6篇
海洋学   1篇
  2022年   1篇
  2018年   1篇
  2016年   2篇
  2014年   5篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
2.
Records of past climate changes have been preserved variously on the earth's surface. Sand dunes are one such prominent imprint, and it is suggested that their presence is an indicator of periods of transition from arid to less arid phases. We report inland sand dunes from Andhra Pradesh (SE India) spread over an area of ~ 500 km2, ~ 75 km inland from the east coast. The dune sands are examined to understand their provenance, transportation, timing of sand aggradation and their relationship to past climates. The dune distribution, grain morphology and the grain-size studies on sands suggest an aeolian origin. Physiography of the study area, heavy mineral assemblage, and abundance of quartz in the parent rocks indicate that the dune sands are largely derived from first-order streams emanating from hills in the region and from weathering of the Nellore schist belt. It appears that the geomorphology and wind direction pattern both facilitated and restricted the dune aggradation and preservation to a limited area. OSL dating of 47 dune samples ranged from the present to ~ 50 ka, thereby suggesting a long duration of sand-dune aggradation and/or reworking history.  相似文献   
3.
Energy requirements constitute a significant cost in groundwater production and can also add to a large carbon footprint when fossil fuels are used for power. Wind-enabled water production is advantageous as it minimizes air pollution impacts associated with groundwater production and relies on a renewable resource. Also, as groundwater extraction represents a deferrable load (i.e., it can be carried out when energy demands within an area are low), it provides a convenient way to overcome the intermittency issue associated with wind power production. Multiple turbine wind farms are needed to generate large quantities of power needed for large-scale groundwater production. Turbines must be optimally located in these farms to ensure proper propagation of kinetic energy throughout the system. By the same token, well placement must reconcile the competing objectives of minimizing interferences between production wells while ensuring the drawdowns at the property boundary are within acceptable limits. A combined simulation–optimization based model is developed in this study to optimize the combined wind energy and water production systems. The wind farm layout optimization model is solved using a re-sampling strategy, while the well field configuration is obtained using the simulated annealing technique. The utility of the developed model is to study wind-enabled water production in San Patricio County, TX. Sensitivity analysis indicated that identifying optimal placement of turbines is vital to extract maximum wind power. The variability of the wind speeds has a critical impact on the amount of water that can be produced. Innovative technologies such as variable flow pumping devices and aquifer storage recovery must be used to smooth out wind variability. While total groundwater extraction is less sensitive to uncertainty in hydrogeological parameters, improper estimation of aquifer transmissivity and storage characteristics can affect the feasibility of wind-driven groundwater production.  相似文献   
4.
Average spectral acceleration, AvgSA, is defined as the geometric mean of spectral acceleration values over a range of periods and it is a ground motion intensity measure used for structural response prediction. One of its advantages stands on the assumption that its distribution is computable from the available GMPEs for spectral acceleration, GMPE-SA, (called here indirect method) without the need for deriving new specific GMPEs for AvgSA, GMPE-AvgSA, (called here direct method). To what extent this assumption is valid, however, has never been verified. As such, we derived an empirical GMPE-AvgSA based on RESORCE ground motion dataset and we compared its predicted values with those from a GMPE-SA via the indirect approach. As expected, the results show that the indirect approach yields median AvgSA estimates that are identical to those of the direct approach. However, the estimates of AvgSA variance of the two methods are identical only if both the GMPE-SA and their empirical correlation coefficients among different SA ordinates are derived from the same record dataset.  相似文献   
5.
Hydraulic gradient is a fundamental aquifer characteristic required to estimate groundwater flow and quantify advective fluxes of pollutants. Graphical and local estimation schemes using potentiometric head information from three or four wells are used to compute hydraulic gradients but suffer from imprecision and subjectivity. The use of linear regression is recommended when hydraulic head data from a groundwater monitoring network consisting of several wells are available. In such cases, statistical influence analysis can be carried out to evaluate how each well within the network impacts the gradient estimate. A suite of five metrics, namely—(1) the hat-values, (2) studentized residuals, (3) Cook’s distance, (4) DFBETAs and (5) Covariance ratio (COVRATIO) are used in this study to identify influential wells within a regional groundwater monitoring network in Kleberg County, TX. The hat-values indicated that the groundwater network was reasonably well balanced and no well exerted an undue influence on the regression. The studentized residuals and Cook’s distance indicated the wells with the highest influence on the regression predictions were those that were close to high groundwater production centers or affected by coastal-aquifer interactions. However, the wells in the proximity of the production centers had the highest impact on the estimated gradient values as ascertained using DFBETAs. The covariance ratio which indicates the sensitivity of a monitoring well on the estimated standard error of regression was noted to be significant at most wells within the network. Therefore, networks seeking to address changes in groundwater gradients due to climate and anthropogenic influences need to be denser than those used to ascertain synoptic gradient estimates alone. The magnitude of the groundwater velocity was greatly underestimated when the influential wells were excluded from the network. The direction of flow was affected to a lesser extent, but a complete gradient reversal was noted when the network consisted of only four peripheral wells. The influence analysis therefore provides a valuable tool to assess the importance of individual wells within a monitoring network and can therefore be useful when existing networks are to be pruned due to fiscal constraints.  相似文献   
6.
The sea levels along the semi-arid South Texas coast are noted to have risen by 3–5 mm/year over the last five decades. Data from General Circulation Models (GCMs) indicate that this trend will continue in the 21st century with projected sea level rise in the order of 1.8–5.9 mm/year due to the melting of glaciers and thermal ocean expansion. Furthermore, the temperature in South Texas is projected to increase by as much as 4 °C by the end of the 21st century creating a greater stress on scarce water resources of the region. Increased groundwater use hinterland due to urbanization as well as rising sea levels due to climate change impact the freshwater-saltwater interface in coastal aquifers and threaten the sustainability of coastal communities that primarily rely on groundwater resources. The primary goal of this study was to develop an integrated decision support framework to assist land and water planners in coastal communities to assess the impacts of climate change and urbanization. More specifically, the developed system was used to address whether coastal side (primarily controlled by climate change) or landward side processes (controlled by both climate change and urbanization) had a greater control on the saltwater intrusion phenomenon. The decision support system integrates a sharp-interface model with information from GCMs and observed data and couples them to statistical and information-theoretic uncertainty analysis techniques. The developed decision support system is applied to study saltwater intrusion characteristics at a small coastal community near Corpus Christi, TX. The intrusion characteristics under various plausible climate and urbanization scenarios were evaluated with consideration given to uncertainty and variability of hydrogeologic parameters. The results of the study indicate that low levels of climate change have a greater impact on the freshwater-saltwater interface when the level of urbanization is low. However, the rate of inward intrusion of the saltwater wedge is controlled more so by urbanization effects than climate change. On a local (near coast) scale, the freshwater-saltwater interface was affected by groundwater production locations more so than the volume produced by the community. On a regional-scale, the sea level rise at the coast was noted to have limited impact on saltwater intrusion which was primarily controlled by freshwater influx from the hinterlands towards the coast. These results indicate that coastal communities must work proactively with planners from the up-dip areas to ensure adequate freshwater flows to the coast. Field monitoring of this parameter is clearly warranted. The concordance analysis indicated that input parameter sensitivity did not change across modeled scenarios indicating that future data collection and groundwater monitoring efforts should not be hampered by noted divergences in projected climate and urbanization patterns.  相似文献   
7.
Historically, surface subsidence as a result of subsurface groundwater fluctuations have produced important and, at times, catastrophic effects, whether natural or anthropogenic. Over the past 30?years, numerical and analytical techniques for the modeling of this surface deformation, based upon elastic and poroelastic theory, have been remarkably successful in predicting the magnitude of that deformation (Le Mouélic and Adragna in Geophys Res Lett 29:1853, 2002). In this work we have extended the formula for a circular-shaped aquifer (Geertsma in J Petroleum Tech 25:734–744, 1973) to a more realistic elliptical shape. We have improved the accuracy of the approximation by making use of the cross terms of the expansion for the elliptic coordinates in terms of the eccentricity, e, and the mean anomaly angle, M, widely used in astronomy. Results of a number of simulations, in terms of e and M developed from the transcendental Kepler equation, are encouraging, giving realistic values for the elliptical approximation of the vertical deformation due to groundwater change. Finally, we have applied the algorithm to modeling of groundwater in southern California.  相似文献   
8.
The motion of a tethered spherical buoy subjected to incident regular waves was measured in a wave tank. Transverse instability was observed when the period of the wave generated was close to one-half of the natural period of the buoy. The transverse instability confirmed as Mathieu type was predominant at the surface but diminished with increase in the depth of submergence. The stable and unstable zones were determined on the Mathieu's instability diagram. Experimental results were in agreement with the predicted zone of instability for a two degree of freedom oscillation problem of Mathieu type which has a periodically varying spring constant.  相似文献   
9.
Partially non-ergodic region specific GMPE for Europe and Middle-East   总被引:2,自引:2,他引:0  
The ergodic assumption considers the time sampling of ground shaking generated in a given region by successive earthquakes as equivalent to a spatial sampling of observed ground motion across different regions. In such cases the estimated aleatory variability in source, propagation, and site seismic processes in ground motion prediction equations (GMPEs) is usually larger than with a non-ergodic approach. With the recently published datasets such as RESORCE for Europe and Middle-East regions, and exploiting algorithms like the non-linear mixed effects regression it became possible to introduce statistically well-constrained regional adjustments to a GMPE, thus ‘partially’ mitigating the impact of the assumption on regional ergodicity. In this study, we quantify the regional differences in the apparent attenuation of high frequency ground motion with distance and in linear site amplification with Vs30, between Italy, Turkey, and rest of the Europe-Middle-East region. With respect to a GMPE without regional adjustments, we obtain up to 10 % reduction in the aleatory variability σ, primarily contributed by a 20 % reduction in the between-station variability. The reduced aleatory variability is translated into an epistemic uncertainty, i.e. a standard error on the regional adjustments which can be accounted for in the hazard assessment through logic-tree branches properly weighted. Furthermore, the between-event variability is reduced by up to 30 % by disregarding in regression the events with empirically estimated moment magnitude. Therefore, we conclude that a further refinement of the aleatory variability could be achieved by choosing a combination of proxies for the site response, and through the homogenization of the magnitude scales across regions.  相似文献   
10.
Bulletin of Earthquake Engineering - Typical seismic ground-motion models predict the response spectral ordinates (GMM-SA), which are the damped responses of a suite of single-degree-of-freedom...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号