首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
地球物理   7篇
地质学   18篇
海洋学   4篇
天文学   16篇
综合类   1篇
自然地理   1篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   6篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   4篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
Modelers often need to quantify the rates at which zooplankton consume a variety of species, size classes and trophic types. Implicit in the equations used to describe the multiple resource functional response (i.e. how nutritional intake varies with resource densities) are assumptions that are not often stated, let alone tested. This is problematic because models are sensitive to the details of these formulations. Here, we enable modelers to make more informed decisions by providing them with a new framework for considering zooplankton feeding on multiple resources. We define a new classification of multiple resource responses that is based on preference, selection and switching, and we develop a set of mathematical diagnostics that elucidate model assumptions. We use these tools to evaluate the assumptions and biological dynamics inherent in published multiple resource responses. These models are shown to simulate different resource preferences, implied single resource responses, changes in intake with changing resource densities, nutritional benefits of generalism, and nutritional costs of selection. Certain formulations are further shown to exhibit anomalous dynamics such as negative switching and sub-optimal feeding. Such varied responses can have vastly different ecological consequences for both zooplankton and their resources; inappropriate choices may incorrectly quantify biologically-mediated fluxes and predict spurious dynamics. We discuss how our classes and diagnostics can help constrain parameters, interpret behaviors, and identify limitations to a formulation's applicability for both regional (e.g. High-Nitrate-Low-Chlorophyll regions comprising large areas of the Pacific) and large-scale applications (e.g. global biogeochemical or climate change models). Strategies for assessing uncertainty and for using the mathematics to guide future experimental investigations are also discussed.  相似文献   
2.
We have obtained infrared colors and limiting magnitudes from 1.25–4.8µm for a sample of 26 of the cm continuum radio sources located in the core of the Oph molecular cloud. Their colors demonstrate that the majority of the sources appear to be heavily reddened objects surrounded by circumstellar accretion disks. In these cases the radio emission most likely diagnoses accretion driven energetic outflow phenomena: either ionized winds or possibly synchrotron emission from shocked gas associated with stellar jets.  相似文献   
3.
By modifying the online software of the Westerbork Synthesis Radio Telescope it is possible to sample the radio emission from a field containing a pulsar synchronously with the pulsed signal. Recording the emission from eight separate temporal windows, we can simultaneously observe both the on-pulse and off-pulse signals. We are using this technique for three different kinds of pulsar investigation: (a) to check and improve the positions of some pulsars; (b) to look for unpulsed components; and (c) to search for weak extended emission around pulsars. Observations have been carried out at 6, 21, 49, and 92 cm. Examples of results from all three types of investigation are given.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   
4.
5.
The objective of this experimental study was to account for the role of sediment availability and specific gravity on cluster formation and cluster geometric characteristics (spacing and size). To isolate the effects of sediment availability and specific gravity on cluster evolution, mono‐sized spheres were used to simulate the cluster evolutionary cycle. Overall, twelve experimental runs were carried out in the laboratory flume. Six of these tests were performed by using glass spheres (specific gravity, SG = 2·58) and the other six by employing an equal combination of glass and Teflon spheres (SG = 2·12) of the same diameter to evaluate the role of specific gravity on cluster evolution. The three sediment availability conditions that were investigated here simulated isolated gravel elements, pool–riffle sequences and densely packed gravel‐bed. An advanced image analysis technique was employed to track the evolution of cluster microforms and provide quantitative information about the size and shape of clusters and the number of clusters per unit area. The results of this study showed that: (1) sediment availability affects the architecture and size of cluster microforms; and (2) clusters consisting of mono‐sized sediments start disintegrating at twice the incipient conditions. By performing complementary tests for the isolated gravel elements case, it was found that the evolutionary cycle of individual clusters could be described as follows, in order of increasing stress: no cluster→two particle cluster→comet→triangle→rhomboid→break up. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
6.
Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d?1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d?1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20–75 μM; 0.26–1 mg L?1) and ultraviolet absorption coefficient values (a 254?<?5 m?1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.  相似文献   
7.
Information about the next Kokomeren Summer School that will take place on August 15–30, 2018, is provided.  相似文献   
8.
An unusual suite of silicified rocks was excavated during a recent harbour-deepening project in Tampa Bay, Florida. These rocks, which we have termed “box-work geodes”, are composed of convoluted, intersecting silica walls enclosing cavities which are either voids or filled with relatively pure monoclinic palygorskite. The “box-work geodes” are interpreted as having formed in shallow lagoonal environments, similar to the Coorong Lagoon of South Australia. Synaeresis of syngenetic palygorskite was followed by opal deposition and case hardening of the material. Subsequent chemical deposition of chalcedony, megacrystalline quartz, barite, and calcite on the void facing walls indicates an open chemical system.

The existence of opal saturated lagoons, as inferred from the “box-work geodes”, suggests that much of the replacement chert, porcelanite, and silicified fossils in the Tertiary deposits of peninsular Florida formed in the shallow subsurface. Subsequent weathering of carbonates and clays not encapsulated in the box works has resulted in formation of a green montmorillonite residual clay bed.  相似文献   

9.
10.
We review previously published and newly obtained crater size-frequency distributions in the inner solar system. These data indicate that the Moon and the terrestrial planets have been bombarded by two populations of objects. Population 1,dominating at early times, had nearly the same size distribution as the present-day asteroid belt, and produced heavily cratered surfaces with a complex, multi-sloped crater size-frequency distribution. Population 2, dominating since about 3.8–3.7 Gyr,had the same size distribution as near-Earth objects(NEOs) and a much lower impact flux, and produced a crater size distribution characterized by a differential –3single-slope power law in the crater diameter range 0.02 km to 100 km. Taken together with the results from a large body of work on age-dating of lunar and meteorite samples and theoretical work in solar system dynamics, a plausible interpretation of these data is as follows. The NEO population is the source of Population 2 and it has been in near-steady state over the past ~ 3.7–3.8 Gyr; these objects are derived from the main asteroid belt by size-dependent non-gravitational effects that favor the ejection of smaller asteroids. However, Population 1 was composed of main belt asteroids ejected from their source region in a size-independent manner, possibly by means of gravitational resonance sweeping during orbit migration of giant planets;this caused the so-called Late Heavy Bombardment(LHB). The LHB began some time before ~3.9 Gyr, peaked and declined rapidly over the next ~ 100 to 300 Myr,and possibly more slowly from about 3.8–3.7 Gyr to ~2 Gyr. A third crater population(Population S) consisted of secondary impact craters that can dominate the cratering record at small diameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号