首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
地球物理   7篇
地质学   1篇
  2023年   1篇
  2016年   2篇
  2010年   2篇
  2009年   1篇
  2005年   1篇
  2000年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.  相似文献   
2.
SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment.  相似文献   
3.
Flow and transport simulation in karst aquifers remains a significant challenge for the ground water modeling community. Darcy's law–based models cannot simulate the inertial flows characteristic of many karst aquifers. Eddies in these flows can strongly affect solute transport. The simple two-region conduit/matrix paradigm is inadequate for many purposes because it considers only a capacitance rather than a physical domain. Relatively new lattice Boltzmann methods (LBMs) are capable of solving inertial flows and associated solute transport in geometrically complex domains involving karst conduits and heterogeneous matrix rock. LBMs for flow and transport in heterogeneous porous media, which are needed to make the models applicable to large-scale problems, are still under development. Here we explore aspects of these future LBMs, present simple examples illustrating some of the processes that can be simulated, and compare the results with available analytical solutions. Simulations are contrived to mimic simple capacitance-based two-region models involving conduit (mobile) and matrix (immobile) regions and are compared against the analytical solution. There is a high correlation between LBM simulations and the analytical solution for two different mobile region fractions. In more realistic conduit/matrix simulation, the breakthrough curve showed classic features and the two-region model fit slightly better than the advection-dispersion equation (ADE). An LBM-based anisotropic dispersion solver is applied to simulate breakthrough curves from a heterogeneous porous medium, which fit the ADE solution. Finally, breakthrough from a karst-like system consisting of a conduit with inertial regime flow in a heterogeneous aquifer is compared with the advection-dispersion and two-region analytical solutions.  相似文献   
4.
The present study demonstrates a methodology for optimization of environmental data acquisition. Based on the premise that the worth of data increases in proportion to its ability to reduce the uncertainty of key model predictions, the methodology can be used to compare the worth of different data types, gathered at different locations within study areas of arbitrary complexity. The method is applied to a hypothetical nonlinear, variable density numerical model of salt and heat transport. The relative utilities of temperature and concentration measurements at different locations within the model domain are assessed in terms of their ability to reduce the uncertainty associated with predictions of movement of the salt water interface in response to a decrease in fresh water recharge. In order to test the sensitivity of the method to nonlinear model behavior, analyses were repeated for multiple realizations of system properties. Rankings of observation worth were similar for all realizations, indicating robust performance of the methodology when employed in conjunction with a highly nonlinear model. The analysis showed that while concentration and temperature measurements can both aid in the prediction of interface movement, concentration measurements, especially when taken in proximity to the interface at locations where the interface is expected to move, are of greater worth than temperature measurements. Nevertheless, it was also demonstrated that pairs of temperature measurements, taken in strategic locations with respect to the interface, can also lead to more precise predictions of interface movement.  相似文献   
5.
Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next‐generation, high‐resolution groundwater flow simulations. Digital, optical, borehole‐wall image data from three closely spaced boreholes in the karst‐carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two‐dimensional models of vuggy megaporosity and matrix‐porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple‐point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes.  相似文献   
6.

The Biscayne Aquifer (Florida, USA) is a coastal, shallow, unconfined, and heterogeneous aquifer with high water tables, composed of less-permeable sand to highly permeable karstic limestone. These properties make the Biscayne Aquifer one of the world’s most productive groundwater resources. The aquifer’s high yield and non-Darcian flow cause challenges for estimating aquifer parameters, which are essential for understanding groundwater processes and managing and protecting the groundwater resources. Water-table fluctuations in the Biscayne Aquifer are associated with astronomical tidal forces and gate operations on canal water-control structures. Analysis of observed groundwater level fluctuations can provide an understanding of the connectivity between the aquifer, Biscayne Bay, and the water level in the canals. Further, groundwater level fluctuations can be used for aquifer parameter estimation. In this research, observed ocean water levels measured at tidal stations and groundwater levels are fitted to Jacob’s analytical solution, where the amplitude of the groundwater head fluctuation decreases exponentially, and the time lag increases with distance from the shore. Observed groundwater levels were obtained from monitoring wells along the Miami-Dade shore and the barrier island of Miami Beach. Results indicate that Jacob’s solution is effective for aquifer parameter estimation in Miami Beach, where monitoring wells are closer to the shore. Estimated hydraulic conductivity appears to increase by four orders of magnitude to approximately 1 m s–1 as the distance from shore increases. Constructing monitoring wells closer to the shore in Miami-Dade County and elsewhere would permit improved aquifer parameter estimation and support enhanced groundwater modeling efforts.

  相似文献   
7.
8.
Estimation of Vertical Concentration Profiles from Existing Wells   总被引:3,自引:1,他引:2  
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号