首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   1篇
地质学   7篇
自然地理   2篇
  2022年   1篇
  2020年   2篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  1998年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Gandaki River Basin (GRB) is an important part of the central Himalayan region, which provides habitat for numerous wild species. However, climatic changes are making the habitat in this basin more vulnerable. This paper aims to assess the potential impacts of climate change on the spatial distributions of habitat changes for two vulnerable species, Himalayan black bear (Ursus thibetanus laniger) and common leopard (Panthera pardus fusca), using the maximum entropy (MaxEnt) species distribution model. Species occurrence locations were used along with several bioclimatic and topographic variables (elevation, slope and aspect) to fit the model and predict the potential distributions (current and future) of the species. The results show that the highly suitable area of Himalayan black bear within the GRB currently encompasses around 1642 km2 (5.01% area of the basin), which is predicted to increase by 51 km2 in the future (2050). Similarly, the habitat of common leopard is estimated as 3999 km2 (12.19% of the GRB area), which is likely to increase to 4806 km2 in 2050. Spatially, the habitat of Himalayan black bear is predicted to increase in the eastern part (Baseri, Tatopani and north from Bhainse) and to decrease in the eastern (Somdang, Chhekampar), western (Burtibang and Bobang) and northern (Sangboche, Manang, Chhekampar) parts of the study area. Similarly, the habitat of common leopard is projected to decrease particularly in the eastern, western and southern parts of the basin, although it is estimated to be extended in the southeastern (Bhainse), western (Harichaur and northern Sandhikhark) and north-western (Sangboche) parts of the basin. To determine the habitat impact, the environmental variables such as elevation, Bio 15 (precipitation seasonality) and Bio 16 (precipitation of wettest quarter) highly contribute to habitat change of Himalayan black bear; while Bio 13 (precipitation of wettest month) and Bio 15 are the main contributors for common leopard. Overall, this study predicted that the suitable habitat areas of both species are likely to be impacted by climate change at different altitudes in the future, and these are the areas that need more attention in order to protect these species.  相似文献   
2.
3.
4.
In recent decades, there have been discussions and predictions regarding the impact of climate on floods, due to its socioeconomic and environmental consequences. For accurate prediction of future flood events and their impacts, it is crucial to have an improved understanding on past flood events. Lacustrine sediments have been used as a natural archive to study the past flood events. Here, we study the impact of 1954 flood event on the lacustrine environment of Bengas and Rupa Lake in central Nepal based on X-ray fluorescence spectrometry (XRF) element analysis, magnetic susceptibility (MS), total organic carbon (TOC) and the biomarker molecular compositions. Results showed that 1954 flood event had significant impacts on the two lakes in terms of detrital input, organic matter deposition and aquatic production. Before the flood event, both two studied lakes had relatively lower catchment erosion rate, lower organic matter deposition and aquatic production. During the flood event, catchment erosion and aquatic production increased in both lakes due to mass transport deposits and the increased nutrition loading attributed to flood event. Following the flood event, Begnas Lake showed the sharp increase in organic matter deposition, whereas in the Rupa Lake organic matter deposition showed minor changes. The difference in organic matter deposition in lakes during flooding event is likely due to detrital material brought and deposited by the flood activity. Overall our results suggest that lacustrine sediments are sensitive to the extreme event and would be an ideal archive for the reconstruction of flood events.  相似文献   
5.
Estimation of geohydrologic properties of fractured aquifers in hard crystalline and/or metamorphosed country rocks is a challenge due to the complex nature of secondary porosity that is caused by differential fracturing. Hydrologic potentiality of such aquifers may be assessed if the geological controls governing the spatial distribution of these fracture systems are computed using a software-based model. As an exemplar, the Precambrian metamorphics exposed in and around the Balarampur town of Purulia district, West Bengal (India) were studied to find out the spatial pattern and consistency of such fracture systems. Surfer and Statistica softwares were used to characterize these rock masses in terms of hydrological, structural and lithological domains. The technique is based on the use of hydraulically significant fracture properties to generate representative modal and coefficient of variance () of fracture datasets of each domain. The is interpreted to obtain the spatial variability of hydraulically significant fracture properties that, in turn, define and identify the corresponding hydrolithostructural domains. The groundwater flow estimated from such a technique is verified with the routine hydrological studies to validate the procedure. It is suggested that the hydrolithostructural domain approach is a useful alternative for evaluation of fracture properties and aquifer potentiality, and development of a regional groundwater model thereof.  相似文献   
6.
7.
The northeast (NE) monsoon season (October, November and December) is the major period of rainfall activity over south peninsular India. This study is mainly focused on the prediction of northeast monsoon rainfall using lead-1 products (forecasts for the season issued in beginning of September) of seven general circulation models (GCMs). An examination of the performances of these GCMs during hindcast runs (1982–2008) indicates that these models are not able to simulate the observed interannual variability of rainfall. Inaccurate response of the models to sea surface temperatures may be one of the probable reasons for the poor performance of these models to predict seasonal mean rainfall anomalies over the study domain. An attempt has been made to improve the accuracy of predicted rainfall using three different multi-model ensemble (MME) schemes, viz., simple arithmetic mean of models (EM), principal component regression (PCR) and singular value decomposition based multiple linear regressions (SVD). It is found out that among these three schemes, SVD based MME has more skill than other MME schemes as well as member models.  相似文献   
8.
Abstract: Ilmenite, hematite, garnet, monazite, zircon, rutile, magnetite, sillimanite, pyroxene and amphibole from the beach sands of Ekakula, Gahiramatha coast, Orissa, India are reported here for the first time. Their total concentration varies from 26. 4 to 100%. Ilmenite, monazite and zircon are between 100 and 300 um in size and are well rounded in shape. Ilmenite-hematite intergrowth is common. Ilmenite has 50. 02–54. 73% TiO2, 42. 42–46. 90% FeO (total Fe) and small amounts of Al, Mn, Mg, Ca, Ba, Si, V, Cr, and Zn. The bulk samples contain 10. 63–41. 42 % TiO2, 6. 15–26. 07 % FeO, 5. 86–16. 75 % Fe2O3, 7. 41–61. 74 % SiO2, 1. 39–12. 83% A12O3, 0. 32–4. 97% CaO, 0. 53–4. 24% P2O5, 0. 17–3. 27% MgO, 0. 15–2. 97% Na2O, 0. 07–2. 34% K2O, and 0. 05–0. 71% V2O5 together with appreciable amounts of La, Ce, Pr, Nd, Sm, Eu, Y, U, Th, Zr, and trace amounts of Pb, Zn, Cu, Ni, Co, and Cr. Khondalite, charnockite, calc-silicate granulite, leptynite, migmatite, gneiss, basic granulite and pegmatite of the Eastern Ghats appear to be the major source for the above heavy mineral assemblages. The samples are amenable to gravity and magnetic methods of beneficiation.  相似文献   
9.
城市扩张是反映经济增长的重要指标,但随意的城市扩张也带来了严重的社会经济问题、环境问题以及城市土地管理问题。在这个背景下,理解城市扩张的过程对于指导城市的可持续增长具有重要意义。本研究采用基于遥感影像的监督分类方法,分析了甘达基流域内的两个大城市—博卡拉和巴拉普尔1990–2018年的城市用地变化。结果表明:在过去的28年,博卡拉和巴拉普尔的城市面积分别显著扩张了300%和近500%。人口增长、城市基础设施和便利的生活方式引起周边地区向城市的人口迁移,是造成本研究区城市扩张的主要原因。除此之外,不断变化的城市定义和城市边界的扩张是造成城市快速扩张的关键因素。由于上述两个城市拥有高水平的商业活动以及现代化的设施,未来城市规模可能继续扩大。应当通过城市规划和政策减少随意的城市扩张,从而实现城市的可持续发展。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号