首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   3篇
  国内免费   4篇
大气科学   3篇
地球物理   15篇
地质学   23篇
海洋学   11篇
天文学   5篇
综合类   2篇
自然地理   4篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2011年   7篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2003年   1篇
  2002年   1篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有63条查询结果,搜索用时 16 毫秒
1.
Processes and rates of weathering in representative tuff obtained from a Green Tuff region were directly examined using a new fluorescent approach. This approach was developed to visualize microscopically the microcracks and micropores that contribute to deterioration. The following observations were made. Progression of tuff weathering is caused by a delicate balance between chemical alteration and physical disintegration. Weathering occurs in many hidden microcracks and micropores not detected under natural light, but which can be clearly visualized under ultraviolet light. Water pathways, such as microcracks and cavities, accelerated the chemical alteration by increasing the effective surface area of rocks in contact with water. As the reaction proceeds, the constituent materials loosen and alteration products become widespread in the matrix. Secondary amorphous to poorly crystallized materials, such as iron hydroxide and aluminosilicate, precipitate on the fracture surfaces, slowing the progress of weathering. At the ultimate stage of weathering in tuff, all cracks and most of the micropores are filled with secondary materials. These observations on a microscopic scale during tuff weathering agree with the assessment of weathering obtained by measuring porosity, P-wave velocity and tensile strength.  相似文献   
2.
Earthquake observations and microtremor measurements were conducted on a 12-storey steel-reinforced concrete building just after its completion. Marked stiffness deterioration was observed over the following five-year period, during which time several earthquakes were recorded and two additional series of microtremor measurements were made. The large contribution made by non-structural elements (especially the curtain walls that cover all sides of the building) to the apparent stiffness of the entire building was lost during this period. Both ageing effects and stiffness reductions depend greatly on the amplitude of the structural response of this building.  相似文献   
3.
Abstract Melting experiments have been carried out on an olivine andesite of Mt Yakushi-Yama from the Miocene Setouchi volcanic belt in northeastern Shikoku, Japan. This andesite has been characterized by a low ratio of FeO*/Mg° (= 0.78). Phase relations have been determined within the pressure range of 2.8 to 19.3 kbar at 1000-1300°C under anhydrous and water-saturated conditions. At pressures less than 8.8 kbar, olivine is a liquidus phase. Orthopyroxene appears on the liquidus at 9.3 kbar under the anhydrous conditions. The multiple saturation point rises up to 17.5 kbar for water-saturated experiments. The andesite melt coexists with olivine and orthopyroxene just below the liquidus at 8.8–9.3 kbar and 1230°C for dry conditions, and at 17.5 kbar and 1060°C under water-saturated conditions. These experimental results indicate that the Yakushi-Yama olivine andesite magma could coexist with a harzburgitic mantle at depths between about 30 and 60 km, and at temperatures between 1060 and 1230°C. Experimental data also suggest a possibility that a high magnesian andesite magma would be generated by a direct partial melting of the uppermost harzburgitic mantle under anhydrous conditions.  相似文献   
4.
Cobalt is obtained mainly as a byproduct of the mining and metallurgical processing of copper and nickel. The amount of minable cobalt has a characteristic supply limit, which is dependent upon demand for copper and nickel. It is considered that cobalt consumption will be affected by the amount mined in the near future, because world demand has been gradually increasing, while the production from copper sulfide ores in Zaire and Zambia, major producing countries, has decreased for political, economical and technological reasons. The world demand for cobalt has surpassed the world mine production, and cobalt sales from the National Defense Stockpile of the United States and exports from Russia and cobalt recovered from stockpiled intermediates contributed to the supply in 1994. It is concluded, from a statistical point of view, that this trend of shortage and high prices for cobalt will continue in the near future.  相似文献   
5.
Tadao  Nishiyama  Aiko  Tominaga  Hiroshi  Isobe 《Island Arc》2007,16(1):16-27
Abstract We carried out hydrothermal experiments in the system dolomite‐quartz‐H2O to track the temporal change in reaction rates of simultaneous reactions during the development of reaction zones. Two types of configurations for the starting materials were prepared: dolomite single crystals + quartz powder + water and quartz single crystals + dolomite powder + water, both sealed separately in gold capsules. Runs at 0.1GPa and 600°C with cold seal pressure vessels gave the following results. (i) In short duration (45–71 h) runs metastable layer sequences involving wollastonite and talc occur in the reaction zone, whereas they disappear in longer duration (168–336 h) runs. (ii) The layer sequence of the reaction zones in short duration runs differs from place to place on the dolomite crystal even in the same run. (iii) The diversity of layer sequences in the short duration runs merges into a unique layer sequence in the longer duration runs. (iv) The reaction zone develops locally on the dolomite crystal, but no reaction zone was observed on the quartz crystal in any of the runs. The lines of evidence (i)–(iii) show that the system evolves from an initial transient‐ to a steady‐state and that the kinetic effect is important in the development of reaction zones. A steady diffusion model for the unique layer sequence Qtz/Di/Fo + Cal/Dol + Cal/Dol shows that the Dol + Cal layer cannot be formed by diffusion‐controlled process and that the stability of the layer sequence Qtz/Di/Fo + Cal/Dol depends not only on L‐ratios (a = /LCaOCaO and b = /LMgOMgO) but also on the relative rate P = (−2ξ1ξ2)/(–ξ1 − 2ξ2) of competing reactions: Dol + 2Qtz = Di + 2CO2 (ξ1) and 2Dol + Qtz = Fo + 2Cal + 2CO2 (ξ2). For smaller P the stability field will shift to higher values of a and b. The steady diffusion model also shows that the apparent‐non‐reactivity on the quartz surface can be attributed to void formation in a large volume fraction in the diopside layer.  相似文献   
6.
As a possible design of a future geoneutrino detector, a KamLAND-type, monolithic, liquid scintillator detector with a thicker veto and a method for particle identification to reject neutron and 9Li background from cosmic-ray muon spallation is considered. Assuming such a detector, the possibility for geoneutrino observation at a depth of around 300 meters of water equivalent is investigated.  相似文献   
7.
Spinifex-like textured metaperidotites from the Higo Metamorphic Rocks (HMR), west-central Kyushu, Japan, may be formed by high-pressure dehydration of antigorite, and may indicate deep subduction of serpentinite reaching a pressure–temperature condition of 1.6 GPa and 740–750 °C. Three rock types have been identified based on mineral assemblage and rock texture: Type I (L) consisting of medium-grained (1–5 cm long) olivine + enstatite + chromite ±tremolite with secondary talc and anthophyllite that occurs in low-grade metamorphic rocks of the biotite zone, Type I (H) of coarse-grained (up to 10 cm long) olivine + enstatite (with clinoenstatite lamella) + chromite ±tremolite with secondary talc that occurs in high-grade metamorphic rocks of the garnet-cordierite zone, and Type II composed of Al-spinel + chlorite + olivine + apatite + ilmenite with minor sodic gedrite in the garnet-cordierite zone together with Type I (H). Olivines in all rock types are mostly serpentinized during exhumation. The chromite-olivine thermometer gives 560–690 °C for Type I (L) rocks, and the spinel-olivine thermometer gives 610–740 °C for Type II rocks. The peak metamorphic pressure will be higher than 1.6 GPa based on the location of the experimentally determined invariant point (P = 1.6 GPa and T = 670 °C) of antigorite + forsterite + enstatite + talc + H2O. This estimate is consistent with the occurrence of chlorite in Type II rocks, which is stable up to 890 °C at 2.0 GPa. The spinifex-like textured metaperidotites occur as small bodies in the low P/T type gneisses, implying tectonic juxtaposition of them probably during exhumation of the HMR. Recent findings of medium pressure (0.9–1.2 GPa) granulites and gneisses from the HMR may indicate that the HMR has a deep root into the wedge mantle from which the spinifex-like textured metaperidotites have derived.  相似文献   
8.
Acid mine drainage (AMD) is a widespread environmental problem associated with working and abandoned mining operations. It results from the microbial oxidation of pyrite in the presence of water and air, affording an acidic solution that contains toxic metal ions. Pyrite microencapsulation, utilizing silica coating, is a novel approach for controlling AMD that has been shown to be very effective in controlling pyrite oxidation. The roles of the solution pH and silica concentration in the formation mechanism for the AMD-preventing coating were investigated. A silica coating can be formed from silica solution at pH 7, at which the amount of Fe eluted from pyrite into the solution is small. No coating was formed at other pH values, and the amounts of eluted Fe were larger than at pH 7, especially at pH 11. The silica coating forms from 2,500 to 5,000 mg/L silica solutions, but not from 0 or 1,000 mg/L silica solutions. The coating formation rate was slower in the 2,500 mg/L silica solution than in the 5,000 mg/L silica solution. The formation of silica coating on pyrite surfaces depends on three main steps: formation of Fe(OH)3 on the surface of pyrite, reaction between Fe(OH)3 and silicate in the solution on the pyrite surface, and growth of the silica layer on the first layer of silica. The best pH condition to enable these steps was around 7, and the silica coating formation rate can be controlled by the concentration of silica.  相似文献   
9.
We monitored seasonal changes of the abundance and composition of microorganisms in the fish-farm sediment in Kusuura Bay, Amakusa, Japan, using the quinone profiling technique, during bioremediation by introducing cultured colonies of polychaete, Capitella sp. I. In November 2004, approximately 9.2 million cultured worms were transferred to the fish-farm sediment, which increased rapidly, and reached 458.5 gWW/m(2) (528,000 indiv./m(2)) in March 2005. During this fast-increasing period of Capitella, the microbial quinone content of the surface sediment (0-2 cm) also increased markedly, and reached 237 micromol/m(2) in January 2005, although the water temperature decreased to the lowest levels in the year. Particularly, the mole fraction of ubiquinone-10 in total quinones in the sediment, indicating the presence of alpha subclass of Proteobacteria, increased by 9.3%. These facts suggest that the bacterial growth was enhanced markedly by the biological activities of worms in the sediment, and the bacteria played an important role in the decomposition of the organic matter in the sediment.  相似文献   
10.
An artificial cloud seeding experiment was performed over the Japan Sea in winter to show how massive seeding could be effective to mitigate heavy snowfall damage. The results showed that 20 min after cloud seeding, a portion of the radar echo beneath the seeding track was weakened to divide the radar echo into two parts. In order to analyze the results, a numerical simulation was conducted by using the Weather Research and Forecasting model verion 3.5.1. In this simulation, the seeding effects were represented as phenomena capable of changing rain particles by accreting cloud ice and snow to form graupel particles and by changing cloud liquid water to snow particles. The graupel particles fell rapidly, thus temporarily intensifying the rainfall, which subsequently decreased. Therefore, the weakened radar echo in the field experiment is deemed to have been caused by the increase in rapidly falling graupel particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号