首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2010年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
This study demonstrates the impact of variations in overall crustal rheology on crustal strength in relatively high PT conditions at mid- to lower mid-crustal levels. In a crustal-scale shear zone, along-strike variations in the rheological competence result in large-scale deformation partitioning and differences in the deformation style and strain distribution. The structural behaviour of the crustal-scale Sottunga–Jurmo shear zone (SJSZ) in SW Finland is described. The shear zone represents a discontinuity between the amphibolite-to-granulite facies, dome-and-basin style crustal block to the north and the amphibolite facies rocks with dominantly steeply dipping structures to the south. The overall deformation style and resulting strains along the shear zone are greatly affected by the local lithology. The results of this study also have implications for the current tectonic models of the Palaeoproterozoic Fennoscandia. The most important implication is that the SJSZ, together with other structurally related shear zones, compartmentalised the far-field stresses, so that the late ductile structures within and south of the SJSZ can be allocated to a convergence from the south as late as ~1.79 Ga rather than to the Nordic orogeny from the west-northwest. It is further suggested that at ~1.79 Ga the stress regime was still compressive/transpressive and that the ~1.79 Ga magmatism in Åland at least initiated in a compressive setting. No extension or orogenic collapse, therefore, occurred in the Åland area while the rocks still were within the ductile regime.  相似文献   
2.
The Palaeoproterozoic Svecofennian crust in southern and central Fennoscandia was established about 1.8 Ga ago after a prolonged history of accretion and intrusion. During late stages of the Svecofennian orogeny, deformation was partitioned into several crustal-scale shear zones in present-day Finland, Sweden and Estonia. One such major ductile deformation zone, ‘the South Finland shear zone’ (SFSZ) extends for almost 200 km through the Åland archipelago in southwestern Finland, and further along the southern and southwestern coast of Finland. This more than a kilometer wide transpressional zone appears to have been repeatedly reactivated. The deformation started with a period of regional, ductile dextral shearing of igneous rocks, producing striped granodioritic and tonalitic gneisses. The ductile phases are locally overprinted and followed by ductile to semi-ductile deformation evidenced by mylonite zones of variable width. The last stage of tectonic activity along the shear zone is recorded by pseudotachylites. Within this study, we dated zircons (SIMS U–Pb) and titanites (ID-TIMS U–Pb) from eight rock samples, and two pseudotachylite whole-rock samples (40Ar/39Ar) in order to reconstruct the deformation and (re)activation history of the shear zone.The results suggest that the medium-grained gneisses underwent three distinct deformation phases separated by time intervals without regional deformation. The ductile deformation within the study area initiated at 1.85 Ga. A second, more intensive deformation phase existed around 1.83 Ga, by which the shear zone was already well developed. Finally, the last ductile event is recorded by 1.79 Ga metamorphic titanites in relatively granoblastic granitoid gneisses that nevertheless already display protomylonitic textures, suggesting the initiation of large-scale mylonitisation around or soon after this time. The age of a pseudotachylite sample and, hence, the brittle deformation is bracketed between 1.78 and 1.58 Ga based on the age of pegmatites cut by pseudotachylites as well as 40Ar/39Ar minimum ages for the pseudotachylite, respectively. The data imply that the rocks within the study area entered the ductile–brittle transition zone due to rapid cooling and exhumation of the crust after 1.79 Ga.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号