首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2002年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 5 毫秒
1
1.
A hitherto unknown terrane and its bounding sutures have been revealed by a combined study of normal-incidence and wide-angle seismic data along the BABEL profile in the Baltic Sea. This Intermediate Terrane is situated between a Northern Terrane of Svecofennian age and a Southwestern Terrane of Gothian age. It is delimited upwards by two low-angle and oppositely dipping sutures and occupies mainly middle and lower crustal levels with a width of 300 km at Moho level. The 1.86 Ga suture against the Northern Terrane is imaged by a prominent almost continuous NE-dipping crustal reflection from 3.5 to 14 s twt over 175 km. Where it downlaps on the Moho, sub-Moho velocities change from 8.2 to 7.8 km/s (±0.2) over less than 25 km. A relatively strong, NE-dipping normal-incidence and wide-angle reflection at 19–23 s twt indicates that the suture extends into the upper mantle. The pervasive NE-dipping reflection fabric of the Intermediate Terrane is interpreted as shear zones that developed during collision and possibly were reactivated by later events. High Poisson's ratios suggest a mafic composition or high fluid content. The 1.86 Ga collision was probably succeeded by continental break-up and removal of an unknown continent, except for the Intermediate Terrane. Subsequent formation of an east-dipping subduction zone further to the west led to the emplacement of 1.81-1.77-Ga-old granitoids in the southern part of the Transscandinavian Igneous Belt. The 1.65-1.60 Ga suture against the Southwestern Terrane is defined by a semi-continuous band of strong SW-dipping reflections between 3 and 8 s twt over 65 km, which are interpreted as a low-angle thrust zone along which Gothian crust overrode the Intermediate Terrane. The identification of three individual seismic terranes in the southeastern part of the Baltic Shield provides new evidence for Palaeoproterozoic plate tectonic processes.  相似文献   
2.
During the evolution of continents, compressive tectonic phases can leave certain tectonic patterns in the lithosphere to be observed by reflection seismology. Also, in the area of the trans-European suture zone (TESZ) in the Baltic Sea, several relatively short, but occasionally strong, compressive phases have left their marks in the lithosphere in form of characteristic fault and thrust zones in the rigid parts of crust and mantle, especially clear and well investigated in some sediment troughs. At depth, interwedging processes seem to be generated by colliding tectonic units with different rheology, creating bi-vergent fault structures, possibly—but not necessarily—initiated by a previous subduction of intervening oceanic lithosphere. Near the surface, reactivation and inversion of previous faults are very selective. Transpressional processes and the reduced friction inside the faults are suggested to play a major role. It is assumed that the transfer of plate boundary stressed over long distances is performed mainly through the thick and rigid mantle lid, not through the thin, rigid, and heterogeneous upper crust. This assumption involves mechanisms of a vertical transfer of stresses from the mantle into the inversion area, and some signs of such a process are seen around the Tornquist Zone (TZ). Several examples of compressive transfer of stresses are shown.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号