首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   4篇
海洋学   2篇
天文学   1篇
自然地理   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  1997年   1篇
  1990年   1篇
  1984年   1篇
排序方式: 共有8条查询结果,搜索用时 78 毫秒
1
1.
2.
3.
Fin-based propulsion systems perform well for both high-speed cruising and high maneuverability in fishes, making them good models for propulsors of autonomous underwater vehicles. Labriform locomotion in fishes is actuated by oscillation of the paired pectoral fins. Here, we present recent research on fin structure, fin motion, and neural control in fishes to outline important future directions for this field and to assist engineers in attempting biomimicry of maneuverable fin-based locomotion in shallow surge zones. Three areas of structure and function are discussed in this review: 1) the anatomical structure of the fin blade, skeleton, and muscles that drive fin motion; 2) the rowing and flapping motions that fins undergo for propulsion in fishes; and 3) the neuroanatomy, neural circuitry, and electrical muscle activity that are characteristic of pectoral fins. Research on fin biomechanics, muscle physiology and neural control is important to the comparative biology of locomotion in fishes and application of fin function for aid in aquatic vehicle design. Recommendations are made regarding fin propulsor designs based on the fin shape, activation pattern, and motion. Research on neural control of fins is a key piece in the puzzle for a complete understanding of comparative fin function and may provide important principles for engineers designing control systems for fin-like propulsors.  相似文献   
4.
In the Cenozoic, the Lower Rhine Basin formed as a rift at the southeastern terminus of the Dutch German Central Graben, while the Rhenish Massif was uplifted. The study focusses on the marginal marine and fluvial fill of the Lower Rhine Basin. A basin model is developed. Support for this study was given by extensive industry outcrop and well data, by new stratigraphical and sedimentological observations. The ingression and subsequent regression of the Cenozoic North Sea is analysed using the concept of base level cyclicity. As the geohistory of the basin was complex, a subsidence curve is constructed. Furthermore, an attempt is made to trace the simultaneous uplift of the Rhenish Massif.  相似文献   
5.
Studying the winter survival of forage grasses under a changing climate requires models that can simulate the dynamics of soil conditions at low temperatures. We developed a simple model that simulates depth of snow cover, the lower frost boundary of the soil and the freezing of surface puddles. We calibrated the model against independent data from four locations in Norway, capturing climatic variation from south to north (Arctic) and from coastal to inland areas. We parameterized the model by means of Bayesian calibration, and identified the least important model parameters using the sensitivity analysis method of Morris. Verification of the model suggests that the results are reasonable. Because of the simple model structure, some overestimation occurs in snow and frost depth. Both the calibration and the sensitivity analysis suggested that the snow cover module could be simplified with respect to snowmelt and liquid water content. The soil frost module should be kept unchanged, whereas the surface ice module should be changed when more detailed topographical data become available, such as better estimates of the fraction of the land area where puddles may form.  相似文献   
6.
Palaeobotanical methods and geochemical techniques were used to assess plant contribution and palaeoenvironment for the Staniantsi Basin, Bulgaria. The aim was to connect palaeovegetation change and climate oscillation based on pollen and statistical analysis with organic geochemical proxies for a Late Miocene lacustrine to paludial sedimentary succession.Three samples from lignite/marl cycles were studied. The biomarker assemblage and bulk chemical data indicated that gymnosperms were not important in the palaeomire. The presence of des-A-triterpenoids, 17,21-seco-triterpenoids, hopanes, a high content of a D-ring monoaromatic hopane, and aromatized triterpenoids suggested that photochemical and microbial processes significantly contributed to the alteration of the organic matter (OM). A prolonged period of high water table and severe mechanical destruction promoted microbial activity prior to burial and enhanced decay. A geochemical appraisal of short term climate oscillation (ca. 21.7 kyr) was attempted within the limitations of the small number of samples studied. The cycles are expressed as lignite/marl-clay layers combined with cyclic changes in swamp vegetation related to cyclic changes in groundwater level and inundation of the basin. In periods of low water level (swamp phase) lignite accumulation took place. Preliminary results for selected samples suggest that the oscillation may be reflected in the content of friedelin vs. possible degradation products. The ratio of a chromatographic peak tentatively assigned as A-norfriedel-8-en-10-one to friedelin is proposed as a means of detecting short term environmental cycles, where values <1 represent the swamp phase and those >1 reflect periods of inundation. However, time-series analysis using densely sampled lignite-clay layer oscillations are needed to confirm the value of this biomarker ratio for environmental reconstruction.  相似文献   
7.
A detailed stable carbon isotopic profile of a late Miocene browncoal seam from the Lower Rhine Embayment, Germany, reveals two clear separate cycles of different frequency: this is the first instance of this type of isotopic signature being recognized within coals. The ratio of the two frequencies suggests this isotopic signal possibly resulted from climatic or vegetational responses to orbital forcing. The cyclicity has been enhanced by the application of conventional filtering methods on the data set. An analysis of the seam's palynology indicates a correlation between heavier isotopic compositions and the presence of Sequoiapollenites polyformosus , whose parent plant is believed to have favoured moist climates and higher groundwater tables.  相似文献   
8.
For the Tortonian, Steppuhn et al. [Steppuhn, A., Micheels, A., Geiger, G., Mosbrugger, V., 2006. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 399–423] perform a model simulation which considers a generally lower palaeorography, a weaker ocean heat transport and an atmospheric CO2 concentration of 353 ppm. The Tortonian simulation of Steppuhn et al. [Steppuhn, A., Micheels, A., Geiger, G., Mosbrugger, V., 2006. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 399–423] demonstrates some realistic trends: the high latitudes are warmer than today and the meridional temperature gradient is reduced. However, the Tortonian run also indicates some insufficiencies such as too cool mid-latitudes which can be due to an underestimated pCO2 in the atmosphere. As a sensitivity study, we perform a further model experiment for which we additionally increase the atmospheric carbon dioxide (700 ppm). According to this CO2 sensitivity experiment, we find a global warming and a globally more intense water cycle as compared to the previous Tortonian run. Particularly the high latitudes are warmer in the Tortonian CO2 sensitivity run which leads to a lower amount of Arctic sea ice and a reduced equator-to-pole temperature difference. Our Tortonian CO2 sensitivity study basically agrees with results from recent climate model experiments which consider an increase of CO2 during the next century (e.g. [Cubasch, U., Meehl, G.A., Boer, G.J., Stouffer, R.J., Dix, M., Noda, A., Senior, C.A., Raper, S., Yap, K.S., 2001. Projections of Future Climate Change. In: Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 525–582]) suggesting that the climatic response on a higher atmospheric CO2 concentration is almost independent from the different settings of boundary conditions (Tortonian versus today). To validate the Tortonian model simulations, we perform a quantitative comparison with terrestrial proxy data. This comparison demonstrates that the Tortonian CO2 sensitivity experiment tends to be more realistic than the previous Tortonian simulation by Steppuhn et al. [Steppuhn, A., Micheels, A., Geiger, G., Mosbrugger, V., 2006. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 399–423]. However, a high carbon dioxide concentration of 700 ppm is questionable for the Late Miocene, and it cannot explain shortcomings of our Tortonian run with ‘normal’ CO2. In order to fully understand the Late Miocene climate, further model experiments should also consider the palaeovegetation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号