首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
测绘学   13篇
地球物理   1篇
地质学   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2009年   1篇
  2007年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
In this short contribution it is demonstrated how integer carrier phase cycle ambiguity resolution will perform in near future, when the US GPS gets modernized and the European Galileo becomes operational. The capability of ambiguity resolution is analyzed in the context of precise differential positioning over short, medium and long distances. Starting from dual-frequency operation with GPS at present, particularly augmenting the number of satellites turns out to have beneficial consequences on the capability of correctly resolving the ambiguities. With a 'double' constellation, on short baselines, the confidence of the integer ambiguity solution increases to a level of 0.99999999 or beyond. Electronic Publication  相似文献   
2.
The paper presents the results of a combined soil and vegetation survey in Ro?ia Montan? mining area (western Romania), famous for its gold and silver deposits, extensively exploited over the last 2,000 years. As the ore extraction has ceased in 2006 and new operations could be initiated in the future, the study contributes to the definition of the environmental baseline. Samples of topsoil and leaves of the tree species Betula pendula and Carpinus betulus have been collected from the inside and outside of the mining area, on a total surface of more than 60 km2. The pH and heavy metal concentrations (Cd, Cr, Cu, Ni, Pb, and Zn) have been measured on 262 soils/sediments samples, revealing the predominantly acidic character of soils and the generally low contents of heavy metals. Stronger acidity and higher contents of heavy metals have been noticed in the proximity of the mining site, on the tailings and waste rock dumps, and along the streams with acid water. More than 100 leaf samples have been analysed for the same heavy metals as soils and also for chlorophyll fluorescence and pigment concentrations. B. pendula has shown a particular ability to concentrate Zn in leaves, at levels that may greatly exceed the Zn content in the corresponding soil samples. The correlation between the heavy metal contents in leaves and in soils, in most of the cases, is not very strong, presumably in relation to the low concentrations in soils. The chlorophyll concentration in leaves of B. pendula slightly diminishes on soils with low pH.  相似文献   
3.
This paper demonstrates a geometry-free GNSS measurement analysis approach and presents results of single frequency GPS, EGNOS and GIOVE short and zero baseline measurements. The purpose is to separate the different contributions to the measurement noise of pseudo range code and carrier phase observations at the receiver. The influence of multipath on the different combinations of observations is also determined. Quantitative results are presented for the thermal code and phase measurement noise and for the correlation between the observations. Comparison of the results with theoretical approximations confirms the validity of the used approach. Results from field measurements clearly show less thermal noise on the Galileo E1BC observations than on the GPS L1C/A observations due to the new signal modulation. The feasibility of ambiguity resolution with a geometry-free model is also discussed including the significant impact of multipath thereon.  相似文献   
4.
The Global Differential GPS (GDGPS) system developed by JPL aims at seamless global real-time positioning at the dm accuracy level for dual-frequency receivers either fixed or mobile, anywhere and at any time. The GDGPS system relies on GPS data transmitted in real-time to a central processing center at JPL from a global network of permanently operating GPS dual-frequency receivers. At the processing center, the Internet-based Global Differential GPS (IGDG) system, the heart of JPLs GDGPS, generates and disseminates over the open Internet special 1-s global differential corrections (IGDG corrections) to the GPS broadcast ephemerides. The IGDG corrections enhance the accuracy of GPS broadcast orbits and clocks down to the dm level and serve as the key-factor for high-precise real-time positioning of a stand-alone receiver. An experimental verification of the dm positional accuracy of the IGDG system was carried out in the Netherlands, by means of both a static and a kinematic test. During the static test GPS data were collected for 5 consecutive days using a fixed immobile receiver and processed as if in real-time. Within the framework of the kinematic test, an experiment was carried out using a kinematic platform. Our tests confirmed the dm accuracy of stand-alone receiver positioning with IGDG. The standard deviation for positioning both in static and kinematic mode appears to be 10 cm in each horizontal component and 20 cm in the vertical component. More than 99% of the IGDG corrections were received with the expected 1-s interval in the field via mobile communication, the latency of the corrections was generally from 7 to 8 s.  相似文献   
5.
Stochastic properties of GNSS range measurements can accurately be estimated using a geometry-free short and zero baseline analysis method. This method is now applied to dual-frequency measurements from a new field campaign. Results are presented for the new GPS L5Q and GIOVE E5aQ wideband signals, in addition to the GPS L1 C/A and GIOVE E1B signals. As expected, the results clearly show the high precision of the new signals, but they also show, rather unexpectedly, significant, slowly changing variations in the pseudorange code measurements that are probably a result of strong multipath interference on the data. Carrier phase measurement noise is assessed on both frequencies, and finally successful mixed GPS-GIOVE double difference ambiguity resolution is demonstrated.  相似文献   
6.
The least-squares ambiguity decorrelation adjustment is a method for fast GPS double-difference (DD) integer ambiguity estimation. The performance of the method will be discussed, and although it is stressed that the method is generally applicable, attention is restricted to short-baseline applications in the present contribution. With reference to the size and shape of the ambiguity search space, the volume of the search space will be introduced as a measure for the number of candidate grid points, and the signature of the spectrum of conditional variances will be used to identify the difficulty one has in computing the integer DD ambiguities. It is shown that the search for the integer least-squares ambiguities performs poorly when it takes place in the space of original DD ambiguities. This poor performance is explained by means of the discontinuity in the spectrum of conditional variances. It is shown that through a decorrelation of the ambiguities, transformed ambiguities are obtained which generally have a flat and lower spectrum, thereby enabling a fast and efficient search. It is also shown how the high precision and low correlation of the transformed ambiguities can be used to scale the search space so as to avoid an abundance of unnecessary candidate grid points. Numerical results are presented on the spectra of conditional variances and on the statistics of both the original and transformed ambiguities. Apart from presenting numerical results which can typically be achieved, the contribution also emphasizes and explains the impact on the method's performance of different measurement scenarios, such as satellite redundancy, single vs dual-frequency data, the inclusion of code data and the length of the observation time span. Received: 31 October 1995 / Accepted: 21 March 1997  相似文献   
7.
GPS Solutions - Precise Point Positioning (PPP) is a popular Global Positioning System (GPS) processing strategy, thanks to its high precision without requiring additional GPS infrastructure....  相似文献   
8.
Real-time single-frequency precise point positioning: accuracy assessment   总被引:1,自引:1,他引:0  
The performance of real-time single-frequency precise point positioning is demonstrated in terms of position accuracy. This precise point positioning technique relies on predicted satellite orbits, predicted global ionospheric maps, and in particular on real-time satellite clock estimates. Results are presented using solely measurements from a user receiver on the L1-frequency (C1 and L1), for almost 3?months of data. The empirical standard deviations of the position errors in North and East directions are about 0.15?m, and in Up direction about 0.30?m. The 95% errors are about 0.30?m in the horizontal directions, and 0.65?m in the vertical. In addition, single-frequency results of six receivers located around the world are presented. This research reveals the current ultimate real-time single-frequency positioning performance. To put these results into perspective, a case study is performed, using a moderately priced receiver with a simple patch antenna.  相似文献   
9.
B?i?a-?tei mine is an open pit mine in NW Romania (West Carpathian Mountains). It was the largest surface uranium deposit in the world. Two means of uranium transport and dissemination were used over time. The first was the natural way, represented by transportation of geological sediments by Cri?ul-B?i?a River that crosses the B?i?a surface deposit. These sediments were used as building materials (stone, gravel, sand). The second way was related to the people living in this valley, who used also the uranium waste as building material. The preliminary indoor radon concentrations measured in the buildings ranged from 40 to 4000 Bq m?3 with a mean value of 241 Bq m?3. A focused radon survey facilitated the selection of 20 houses with the highest indoor radon that were therefore proposed for remediation. To find the radon sources of these houses, systematic investigations on radon were performed. The remedial measures for these 20 houses were tested on a chosen pilot house.  相似文献   
10.
Single-frequency precise point positioning with optimal filtering   总被引:7,自引:0,他引:7  
The accuracy of standalone GPS positioning improved significantly when Selective Availability was turned off in May 2000. With the availability of various public GPS related products including precise satellite orbits and clocks, and ionosphere maps, a single-frequency standalone user can experience even a further improvement of the position accuracy. Next, using carrier phase measurements becomes crucial to smoothen the pseudorange noise. In this contribution, the most critical sources of error in single-frequency standalone positioning will be reviewed and different approaches to mitigate the errors will be considered. An optimal filter (using also carrier phase measurements) will be deployed. The final approach will then be evaluated in a decently long static test with receivers located in different regions of the world. Kinematic experiments have also been performed in various scenarios including a highly dynamic flight trial. The accuracy, in general, can be confirmed at 0.5 m horizontal and 1 m vertical, with static tests. Ultimate results demonstrate an accuracy close to 2 dm (95%) for the horizontal position components and 5 dm (95%) for the vertical in the flight experiment.
Anh Quan LeEmail:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号