首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
地球物理   3篇
地质学   30篇
天文学   2篇
自然地理   5篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
Coal-seam gas production requires groundwater extraction from coal-bearing formations to reduce the hydraulic pressure and improve gas recovery. In layered sedimentary basins, the coalbeds are often separated from freshwater aquifers by low-permeability aquitards. However, hydraulic connection between the coalbed and aquifers is possible due to the heterogeneity in the aquitard such as the existence of conductive faults or sandy channel deposits. For coal-seam gas extraction operations, it is desirable to identify areas in a basin where the probability of hydraulic connection between the coalbed and aquifers is low in order to avoid unnecessary loss of groundwater from aquifers and gas production problems. A connection indicator, the groundwater age indictor (GAI), is proposed, to quantify the degree of hydraulic connection. The spatial distribution of GAI can indicate the optimum positions for gas/water extraction in the coalbed. Depressurizing the coalbed at locations with a low GAI would result in little or no interaction with the aquifer when compared to the other positions. The concept of GAI is validated on synthetic cases and is then applied to the north Galilee Basin, Australia, to assess the degree of hydraulic connection between the Aramac Coal Measure and the water-bearing formations in the Great Artesian Basin, which are separated by an aquitard, the Betts Creek Beds. It is found that the GAI is higher in the western part of the basin, indicating a higher risk to depressurization of the coalbed in this region due to the strong hydraulic connection between the coalbed and the overlying aquifer.  相似文献   
2.
The central and southern Perth Basin in southwestern Australia has a geological history involving multiple regional unconformity‐forming events from the Permian to Recent. This study uses sonic transit time analysis to quantify the magnitudes of net and gross exhumation for four stratigraphic periods from 43 wells. Most importantly, we quantify gross exhumation of the Permian–Triassic, Triassic–Jurassic, Valanginian break‐up and post‐Early Cretaceous events. Post‐Early Cretaceous gross exhumation averages 900‐m offshore and 600‐m onshore. Up to 200 m of this exhumation may be attributed to localized fault block rotation during extension in the Late Cretaceous and/or reverse fault re‐activation due to the compressive stresses in Australia in the last 50 Ma. The remainder is attributed to regional exhumation caused by epeirogenic processes either during the Cenozoic or at the Aptian–Albian boundary. Maximum burial depths prior to the Valanginian unconformity‐forming event were less than those reached subsequently, so that the magnitude of Valanginian break‐up exhumation cannot be accurately quantified. Gross exhumation prior to the break‐up of Gondwana was defined by large magnitude differences (up to 2500 m) between adjoining sub‐basins. At the end of Triassic, exhumation is primarily attributed to reverse re‐activation of faults that were driven by short‐wavelength inversion and exhumation at the end Permian is likely caused by uplift of rotated fault blocks during extension. The evidence from quantitative exhumation analysis indicates a switch in regime, from locally heterogeneous before break‐up to more regionally homogeneous after break‐up.  相似文献   
3.
Thirlmere Lakes is a group of five freshwater wetlands in the southwest fringe of Sydney, Australia, that is subject to cyclic wetting and drying. The lakes are surrounded by activities that have led to increasing pressure on the local surface and groundwater supply including farming and mining. The mine has been operating for more than 30 years, and in recent times, there has been speculation that the surface subsidence and underground pumping may have some impact on surface water and groundwater hydrology. A study was undertaken using satellite imagery to examine the relation between water area changes and rainfall variability. The study utilised Landsat time-series data during the period 1982–2014 to calculate changes in the lake water area (LA), through the normalised difference water index (NDWI) threshold. High classification accuracy was achieved using NDWI against high-resolution data that are available for the years 2008 (88.4 %), 2010 (92.8 %), and 2013 (96.9 %). The LA measurement was correlated against 11 historic observations that occurred in 2009, 2010, and 2011 during drier wetland conditions. Correlation analysis of the LA with the residual rainfall mass spread across the past 30 years has found that rainfall variability is a major dominant factor associated with the wetland changes. The underground mining operations, if verified by independent investigations, probably play a minor or negligible contributor to variations in total wetland area during the study period. This study has demonstrated that remote sensing is a technique that can be used to augment limited historic data.  相似文献   
4.
The influence of the North Atlantic on the margins of Europe means the region is particularly sensitive to changes in the ocean–atmospheric system. During the Last Glacial–Interglacial Transition (16–8 cal ka bp ) this system was repeatedly disrupted, leading to a series of abrupt and short-lived shifts in climate. Despite much research, the number and magnitude of these ‘centennial-scale’ events is not well understood. To address this, we expand upon investigations at Quoyloo Meadow, Orkney, Scotland, one of the best chronologically constrained palaeoclimate records in northern Britain. By coupling stable isotope and chironomid fossil analyses with existing data, this study identifies multiple phases of centennial-scale disturbance at: c. 14.0, 11.1, 10.8, 10.5, 10.45 and 10.3 cal ka bp , with the events at 14.0 and 10.3 exhibiting a particularly pronounced cold-climate signature. During the Holocene, the strongest response to climate forcing was at c. 10.3–10.0 cal ka bp , expressed as a two-stage drop in mean July temperatures, a shift in pollen spectra indicative of ‘less-stable’ climatic regimes, and a depletion in δ18O values. We interpret this as the first reliably dated incidence of the ‘10.3-ka event’ in the British Isles and consider the wider impact of this climatic reversal in other Holocene records.  相似文献   
5.
Measurement of barometric efficiency (BE) from open monitoring wells or loading efficiency (LE) from formation pore pressures provides valuable information about the hydraulic properties and confinement of a formation. Drained compressibility (α) can be calculated from LE (or BE) in confined and semi-confined formations and used to calculate specific storage (S s). S s and α are important for predicting the effects of groundwater extraction and therefore for sustainable extraction management. However, in low hydraulic conductivity (K) formations or large diameter monitoring wells, time lags caused by well storage may be so long that BE cannot be properly assessed in open monitoring wells in confined or unconfined settings. This study demonstrates the use of packers to reduce monitoring-well time lags and enable reliable assessments of LE. In one example from a confined, high-K formation, estimates of BE in the open monitoring well were in good agreement with shut-in LE estimates. In a second example, from a low-K confining clay layer, BE could not be adequately assessed in the open monitoring well due to time lag. Sealing the monitoring well with a packer reduced the time lag sufficiently that a reliable assessment of LE could be made from a 24-day monitoring period. The shut-in response confirmed confined conditions at the well screen and provided confidence in the assessment of hydraulic parameters. A short (time-lag-dependent) period of high-frequency shut-in monitoring can therefore enhance understanding of hydrogeological systems and potentially provide hydraulic parameters to improve conceptual/numerical groundwater models.  相似文献   
6.
A zircon grain in an orthopyroxene–garnet–phlogopite–zircon–rutile-bearing xenolith from Udachnaya, Siberia, preserves a pattern of crystallographic misorientation and subgrain microstructure associated with crystal–plastic deformation. The zircon grain records significant variations in titanium (Ti) from 2.6 to 30 ppm that corresponds to a difference in calculated Ti-in-zircon temperatures of over several hundred degrees Celsius. The highest Ti concentration is measured at subgrain centres (30 ppm), and Ti is variably depleted at low-angle boundaries (down to 2.6 ppm). Variations in cathodoluminescence coincide with the deformation microstructure and indicate localised, differential enrichment of rare earth elements (REE) at low-angle boundaries. Variable enrichment of U and Th and systematic increase of Th/U from 1.61 to 3.52 occurs at low-angle boundaries. Individual SHRIMP-derived U–Pb ages from more deformed zones (mean age of 1799 ± 40, n = 22) are systematically younger than subgrain cores (mean age of 1851 ± 65 Ma, n = 7), and indicate that open system behaviour of Ti–Th–U occurred shortly after zircon growth, prior to the accumulation of significant radiogenic Pb. Modelling of trace-element diffusion distances for geologically reasonable thermal histories indicates that the observed variations are ~ 5 orders of magnitude greater than can be accounted for by volume diffusion. The data are best explained by enhanced diffusion of U, Th and Ti along deformation-related fast-diffusion pathways, such as dislocations and low-angle (< 5°) boundaries. These results indicate chemical exchange between zircon and the surrounding matrix and show that Ti-in-zircon thermometry and U–Pb geochronology from deformed zircon may not yield information relating to the conditions and timing of primary crystallisation.  相似文献   
7.
M.-A. Kaczmarek  S.M. Reddy  N.E. Timms 《Lithos》2011,127(3-4):414-426
Magmatic zircons within two sheared gabbroic dykes from the peridotitic massif of Lanzo (Western-Alps, Italy) revealed evolution of deformation from crystal plasticity to rigid body rotation during shear zone evolution. This is the first time that multiple zircon grains have been analysed in a kinematic context in a shear zone. Zircon grains recorded crystal plastic deformation activating the commonly inferred <100>{001} and <001>{100} glide-systems to the newly identified <001>{110} glide-system. The exact selection of glide-system could be dependant of deformation conditions such as pressure, temperature, and strain rate. Moreover, the activation of one or several glide-systems within a single grain could be favoured by the primary orientation of the grains combined with a high strain rate. In these sheared gabbros, the deformation mechanisms evolve from plastic deformation at low strain rate conditions to increase strain, strain softening and localisation of deformation. The progressive shear zone development and the softening of the matrix relative to the zircon has lead to a switch from crystal-plasticity to rigid body rotation of zircon. The zircon grains rigid body rotation involved that their long axes became parallel to the lineation of the shear zone, causing reorientation and dispersion of the misorientation axes away from kinematic Y.  相似文献   
8.
Carbonate reactions are common in mineral deposits due to CO2-rich mineralising fluids. This study presents the first in-depth, integrated analysis of microstructure and microchemistry of fluid-mediated carbonate reaction textures at hydrothermal conditions. In doing so, we describe the mechanisms by which carbonate phases replace one another, and the implications for the evolution of geochemistry, rock microstructures and porosity. The sample from the 1.95 Moz Junction gold deposit, Western Australia, contains calcite derived from carbonation of a metamorphic amphibole—plagioclase assemblage that has further altered to siderite and dolomite. The calcite is porous and contains iron-rich calcite blebs interpreted to have resulted from fluid-mediated replacement of compositionally heterogeneous amphiboles. The siderite is polycrystalline but nucleates topotactically on the calcite. As a result, the boundaries between adjacent grains are low-angle boundaries (<10°), which are geometrically similar to those formed by crystal–plastic deformation and recovery. Growth zoning within individual siderite grains shows that the low-angle boundaries are growth features and not due to deformation. Low-angle boundaries develop due to the propagation of defects at grain faces and zone boundaries and by impingement of grains that nucleated with small misorientations relative to each other during grain growth. The cores of siderite grains are aligned with the twin planes in the parent calcite crystal showing that the reactant Fe entered the crystal along the twin boundaries. Dolomite grains, many of which appear to in-fill space generated by the siderite replacement, also show alignment of cores along the calcite twin planes, suggesting that they did not grow into space but replaced the calcite. Where dolomite is seen directly replacing calcite, it nucleates on the Fe-rich calcite due to the increased compatibility of the Fe-bearing calcite lattice relative to the pure calcite. Both reactions are interpreted as fluid-mediated replacement reactions which use the crystallography and elemental chemistry of the calcite. Experiments of fluid-mediated replacement reactions show that they proceed much faster than diffusion-based reactions. This is important when considering the rates of reactions relative to fluid flow in mineralising systems.  相似文献   
9.
The Liverpool Plains in northern New South Wales contain some of the best agricultural land in Australia and are underlain by extensive smectite clay-dominated soils sourced from weathering the alkali basalts of the Liverpool Ranges. It had been thought that a relatively simple geological model explained the underlying Cenozoic sequence with salt-rich clays of the Narrabri Formation overlying sands and gravel aquifers comprising the Gunnedah Formation. Extensive groundwater modelling based upon this simple conceptualisation has been used in management plans proposed by the mining and agricultural industries. A 31.5 m core has been recovered using minimally disturbed triple-tube coring methods at Cattle Lane (Latitude –31.52° S, Longitude 150.47° E) to resolve uncertainty concerning the aquitard status of the upper layer. Recovered core has been examined and tested to determine grainsize, cation-exchange capacity, X-ray diffraction, X-ray fluorescence and microscopic examination of granular components. These measurements complement surface and borehole geophysical techniques, hydrogeological data and hydrochemical analysis of water samples recovered from a series of specially constructed piezometers adjacent to the cored hole. The sequence overlies a Late Cretaceous channel cut into Permian bedrock at 91 m depth with sands and clays below 31.5 m considered to represent various alluvial fill events mostly occurring since the Early Pliocene. Erosion of Late Eocene alkali basalts on the Liverpool Ranges, with the formation of smectite clays, pedogenic carbonates and with the addition of quartz from both eolian sources and locally derived from adjacent Triassic sandstone hills, provides the great majority of the sediment recovered from the cores. Late Pleistocene (114 ka) to Holocene ages were determined for the core from three optically stimulated luminescence (OSL) measurements on fine sands (13, 23 and 29 m BG). Detailed examination has failed to detect any evidence of a boundary between Narrabri and Gunnedah formations revealing rather a gradual change in dominance of clays and silts over sands and gravels embedded in a clay-rich matrix. This result challenges the conceptualisation used to conduct groundwater modelling on the Liverpool Plains.  相似文献   
10.
Yallalie is a ~12 km diameter circular structure located ~200 km north of Perth, Australia. Previous studies have proposed that the buried structure is a complex impact crater based on geophysical data. Allochthonous breccia exposed near the structure has previously been interpreted as proximal impact ejecta; however, no diagnostic indicators of shock metamorphism have been found. Here we report multiple (27) shocked quartz grains containing planar fractures (PFs) and planar deformation features (PDFs) in the breccia. The PFs occur in up to five sets per grain, while the PDFs occur in up to four sets per grain. Universal stage measurements of all 27 shocked quartz grains confirms that the planar microstructures occur in known crystallographic orientations in quartz corresponding to shock compression from 5 to 20 GPa. Proximity to the buried structure (~4 km) and occurrence of shocked quartz indicates that the breccia represents either primary or reworked ejecta. Ejecta distribution simulated using iSALE hydrocode predicts the same distribution of shock levels at the site as those found in the breccia, which supports a primary ejecta interpretation, although local reworking cannot be excluded. The Yallalie impact event is stratigraphically constrained to have occurred in the interval from 89.8 to 83.6 Ma based on the occurrence of Coniacian clasts in the breccia and undisturbed overlying Santonian to Campanian sedimentary rocks. Yallalie is thus the first confirmed Upper Cretaceous impact structure in Australia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号