首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
测绘学   1篇
地球物理   10篇
地质学   23篇
海洋学   1篇
天文学   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2004年   4篇
  2002年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
In order to provide new data on the neotectonics and geodynamic properties of western Syria, studies of marine terraces have been carried out. The most attention was paid to the lower terraces in the range of 3–5 to 30–35 m above sea level, because they have more complete distributions along the shore. The lower terraces were examined along the coastal area from Tartus to Latakia, and along the carbonate cliff on Arwad Island. Seven 230Th/U dates for these terraces are in the range of 85–130 ka, suggesting the age interval of the last interglacial (MIS 5). New dates on the lower terraces provide a basis for stratigraphical and geomorphological interpretation as well as neotectonic reconstruction. According to the geomorphological data and lithological composition of those terraces, two main uplifted blocks can be established. One coincides with the Latakia block, and another corresponds to the western margin of the Banias volcanic plateau. These blocks are divided by a subsided structure corresponding to the Nahr el Kebir graben. The amplitude of neotectonic uplifting in the Latakia and Banias blocks reaches 15–20 m for the Late Pleistocene.  相似文献   
2.
Geotectonics - Studies carried out by the authors show that the uplift of Central Asia situated between the eastern Alpine–Himalayan and western Altai–Stanovoy orogenic belts formed in...  相似文献   
3.
New data on geology and 21 K–Ar dates of the Late Oligocene–Quaternary basalts in Syria, combined with analysis of the new and previous data are used to reconstruct the volcanic history and relations between it and tectonic events. Volcanism began at the end of Oligocene (26–24 Ma) and was concentrated in the Late Oligocene–Early Miocene along a N-trending band, which stretches from the Jebel Arab (Harrat Ash Shaam) up to Kurd Dagh and southern Turkey. Activity waned in the Middle Miocene (17–12 Ma), but was resumed in the same band in the Tortonian and increased in the Messinian and Early Pliocene (6.3–4 Ma), when volcanism spread to the Shin Plateau and its coastal extension. After a brief hiatus ~ 4–3.5 Ma, volcanism became still more intensive and spread from the N-trending band to the east into the northern margin of the Mesopotamian Foredeep and to the west into the Dead Sea Transform zone. Additional eruptions continued into the Holocene.Volcanism lasted > 25 million years in the Jebel Arab Highland and > 15 million years in the Aleppo Plateau. The long duration of volcanism in the same parts of the moving Arabian plate and absence of records of one-way migration of the activity mean that the magmatic sources moved together with the plate, i.e., they were situated within the lithosphere mantle. Coincidence of the tectonic and volcanic stages of the Arabian plate development proves that volcanic activity depended on the geodynamic situation, caused by the plate motion. Situated within the lithosphere, magmatic sources within this transverse band were possibly caused by thermal and deforming influences of the asthenospheric lateral flow, moved laterally from the Ethiopia–Afar deep superplume.  相似文献   
4.
One of the probable mechanisms that controls the composition of highly mineralized chloride groundwaters is studied using physicochemical numerical simulations of equilibria in water–rock systems. Concentrated brines in the Olenek cryoartesian basin in the northeastern Siberian Platform are determined to be undersaturated with respect of major rock-forming minerals, which suggests that the metamorphosed sedimentary brines should have been diluted by meteoric waters during a certain evolutionary episode of the permafrost zone of the basin in the Late Pleistocene and Holocene.  相似文献   
5.
New data on the stratigraphy, faults, and formation history of lower to middle Pleistocene rocks in Late Cenozoic basins of northwestern Armenia are presented. It has been established that the low-mountain topography created by tectonic movements and volcanic activity existed in the region by the onset of the Pleistocene. The manifestations of two geodynamic structure-forming factors became clear in Pleistocene: (i) collisional interaction of plates due to near-meridional compression and (ii) deep tectogenesis and magma formation expressed in the distribution of vertical movements and volcanism. The general uplift of the territory, which was also related to deep processes, reached 350–500 m in basins and 600–800 m in mountain ranges over the last 0.5 Ma. The early Pleistocene (~1.8 Ma) low- and medium-mountain topography has been reconstructed by subtraction of the latest deformations and uplift of the territory. Ancient human ancestry appeared at that time.  相似文献   
6.
7.
On the basis of an analysis of the development history of seismometers, the conclusion is made that a new generation of instruments—digital seismometers—should be created. The functions of a digital seismometer and its advantages over other existing instruments are described in brief.  相似文献   
8.
The Ming-Kush-Kökömeren Zone in the Middle Tien Shan is a transpressional structural unit, i.e., a longitudinal recent faultline depression, where manifestations of transverse shortening (intense folding, reverse and thrust faulting) are combined with left-lateral offset along the same faults; the left-lateral offset is commensurable to vertical separation along reverse and thrust faults or it even exceeds the latter. The complicated deformation within this zone has developed most intensely since the late Pliocene and reached a peak in the Pleistocene. However, the origin of this structural unit was at the onset of neotectonic stage, as evidenced from the Oligocene-lower Miocene conglomerate unit, which was formed as a product of the destruction of reactivated Hercynian thrust faults and nappes in the southern wall of the zone. The conglomerate filled a narrow ramp valley that formed in front of thrusts, probably due to the strike-slip offsets along boundary faults. Similar transpressional linear zones-Tessyk-Sary-Bulak, Uzunbulak-Oy-Kain, Kara-Köl, and Chong-Kemin (Kemin-Chilik)-are known in the Middle Tien Shan.  相似文献   
9.
The spatial, chronological, and genetic relationships of recent (Late Alpine) collisions to mountain building are considered at three levels of scale: (i) in separate zones of the Arabian–Caucasus segment of the Alpine–Himalayan Orogenic Belt, (ii) throughout the central segment of this belt from the Alps to the Himalalayas, and (iii) in Central Asia and other mountain belts of continents. Three stages of mountain building are distinguished at all three levels. The first stage starts with widespread collision and similar plate interactions from the end of the Eocene to the middle Miocene and is expressed in the formation of uplifts, commonly no higher than the moderately elevated level in regions that concentrate deformations of transverse shortening induced by compression. The second short stage, which embraces the Pliocene–Quaternary and occasionally the end of the Miocene, differs in general, though differentiated in the value and intensification of vertical movements, when the height of mountains increases by 2–3 times. Elevations are spread over certain platform territories and even frameworks of rift zones. This is related not so much to the intensity of compression and shortening as to the compositional transformation of the upper mantle and the lower crust, leading to their decompaction. Comparison with the Hercynian and Caledonian orogenic stages shows that the second phase, predetermined by widespread collision, reflects a more important geodynamic event expressed in a change of the global plate interaction system and its deep-seated sources.  相似文献   
10.
Trifonov  V. G.  Zelenin  E. A.  Sokolov  S. Yu.  Bachmanov  D. M. 《Geotectonics》2021,55(3):361-376
Geotectonics - Central Asia exceeds neighboring territories in the intensity of Quaternary uplifts and active faulting. The active fault kinematics differ in the northeast of the region, from...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号