首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   4篇
地球物理   6篇
  2018年   1篇
  2017年   3篇
  2001年   1篇
  1991年   1篇
排序方式: 共有6条查询结果,搜索用时 125 毫秒
1
1.
Flume experiments were conducted on different bed stages across the ripple–dune transition. As flow velocity increases, an initially flat bed surface (made of fairly uniform sandy material) is gradually transformed into a two‐dimensional rippled bed. With further increase in velocity, two‐dimensional ripples are replaced by irregular, linguoid ripples. As the average velocity necessary for the ripple–dune transition to occur is imposed on the bed surface, these non‐equilibrium linguoid ripples are further transformed into larger, two‐dimensional dunes. For each of these stages across the transition, a concrete mould of the bed was created and the flow structure above each fixed bed surface investigated. An acoustic Doppler velocimeter was used to study the flow characteristics above each bed surface. Detailed profiles were used along a transect located in the middle of the channel. Results are presented in the form of spatially averaged profiles of various flow characteristics and of contour maps of flow fields (section view). They clearly illustrate some important distinctions in the flow structure above the different bedform types associated with different stages during the transition. Turbulence intensity and Reynolds stresses gradually increase throughout the transition. Two‐dimensional ripples present a fairly uniform spatial distribution of turbulent flow characteristics above the bed. Linguoid ripples induce three‐dimensional turbulence structure at greater heights above the bed surface and turbulence intensity tends to increase steadily with height above bed surface in the wake region. A very significant increase in turbulence intensity and momentum exchange occurs during the transition from linguoid ripples to dunes. The turbulent flow field properties above dunes are highly dependent on the position along and above the bed surface and these fields present a very high degree of spatial variability (when compared with the rippled beds). Further investigations under natural conditions emphasizing sediment transport mechanisms and rates during the transition should represent the next step of analysis, together with an emphasis on quadrant analysis. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
2.
Understanding the source of dissolved methane in drinking‐water aquifers is critical for assessing potential contributions from hydraulic fracturing in shale plays. Shallow groundwater in the Texas portion of the Haynesville Shale area (13,000 km2) was sampled (70 samples) for methane and other dissolved light alkanes. Most samples were derived from the fresh water bearing Wilcox formations and show little methane except in a localized cluster of 12 water wells (17% of total) in a approximately 30 × 30 km2 area in Southern Panola County with dissolved methane concentrations less than 10 mg/L. This zone of elevated methane is spatially associated with the termination of an active fault system affecting the entire sedimentary section, including the Haynesville Shale at a depth more than 3.5 km, and with shallow lignite seams of Lower Wilcox age at a depth of 100 to 230 m. The lignite spatial extension overlaps with the cluster. Gas wetness and methane isotope compositions suggest a mixed microbial and thermogenic origin with contribution from lignite beds and from deep thermogenic reservoirs that produce condensate in most of the cluster area. The pathway for methane from the lignite and deeper reservoirs is then provided by the fault system.  相似文献   
3.
Assessing natural vs. anthropogenic sources of methane in drinking water aquifers is a critical issue in areas of shale oil and gas production. The objective of this study was to determine controls on methane occurrences in aquifers in the Eagle Ford Shale play footprint. A total of 110 water wells were tested for dissolved light alkanes, isotopes of methane, and major ions, mostly in the eastern section of the play. Multiple aquifers were sampled with approximately 47 samples from the Carrizo‐Wilcox Aquifer (250‐1200 m depth range) and Queen City‐Sparta Aquifer (150‐900 m depth range) and 63 samples from other shallow aquifers but mostly from the Catahoula Formation (depth <150 m). Besides three shallow wells with unambiguously microbial methane, only deeper wells show significant dissolved methane (22 samples >1 mg/L, 10 samples >10 mg/L). No dissolved methane samples exhibit thermogenic characteristics that would link them unequivocally to oil and gas sourced from the Eagle Ford Shale. In particular, the well water samples contain very little or no ethane and propane (C1/C2+C3 molar ratio >453), unlike what would be expected in an oil province, but they also display relatively heavier δ13Cmethane (>?55‰) and δDmethane (>?180‰). Samples from the deeper Carrizo and Queen City aquifers are consistent with microbial methane sourced from syndepositional organic matter mixed with thermogenic methane input, most likely originating from deeper oil reservoirs and migrating through fault zones. Active oxidation of methane pushes δ13Cmethane and δDmethane toward heavier values, whereas the thermogenic gas component is enriched with methane owing to a long migration path resulting in a higher C1/C2+C3 ratio than in the local reservoirs.  相似文献   
4.
Clusters of elevated methane concentrations in aquifers overlying the Barnett Shale play have been the focus of recent national attention as they relate to impacts of hydraulic fracturing. The objective of this study was to assess the spatial extent of high dissolved methane previously observed on the western edge of the play (Parker County) and to evaluate its most likely source. A total of 509 well water samples from 12 counties (14,500 km2) were analyzed for methane, major ions, and carbon isotopes. Most samples were collected from the regional Trinity Aquifer and show only low levels of dissolved methane (85% of 457 unique locations <0.1 mg/L). Methane, when present is primarily thermogenic (δ13C 10th and 90th percentiles of ?57.54 and ?39.00‰ and C1/C2+C3 ratio 10th, 50th, and 90th percentiles of 5, 15, and 42). High methane concentrations (>20 mg/L) are limited to a few spatial clusters. The Parker County cluster area includes historical vertical oil and gas wells producing from relatively shallow formations and recent horizontal wells producing from the Barnett Shale (depth of ~1500 m). Lack of correlation with distance to Barnett Shale horizontal wells, with distance to conventional wells, and with well density suggests a natural origin of the dissolved methane. Known commercial very shallow gas accumulations (<200 m in places) and historical instances of water wells reaching gas pockets point to the underlying Strawn Group of Paleozoic age as the main natural source of the dissolved gas.  相似文献   
5.
The Geochemistry of Boron in a Landfill Monitoring Program   总被引:1,自引:0,他引:1  
Ground water monitoring data collected during the past eight years at a permitted municipal solid waste (MSW) disposal facility located in the midwestern United States indicated fluctuations in typical leachate indicator parameter concentrations. Apparent trends in the data inferred leachate outbreak, generating suspicion as to the integrity of the landfill liner. Eight ground water monitoring wells were installed in three distinct geologic units at the landfill facility, including glacial drift, silurian dolomite, and a post-glacial peat fen, which is downgradient from the landfill. Piezometer nests were used to define ground water gradients at the site. Using boron as an indicator, the occurrence of analytes of concern in the downgradient monitoring wells were shown to be indicative of the natural geochemistry of site ground water. This work emphasizes the importance of understanding site hydrogeology during the interpretation of ground water quality data.  相似文献   
6.
There is concern about adverse impacts of natural gas (primarily methane) production on groundwater quality; however, data on trace element concentrations are limited. The objective of this study was to compare the distribution of trace elements in groundwater samples with and without dissolved methane in aquifers overlying the Barnett Shale (Hood and Parker counties, 207 samples) and the Haynesville Shale (Panola County, 42 samples). Both shales have been subjected to intensive hydraulic fracturing for gas production. Well clusters with high dissolved methane were previously found in these counties and are thought to be of natural origin. Overall, groundwater in these counties is of excellent quality with typically low elemental concentrations. Several statistical analyses strongly suggest that most trace element concentrations, generally at low background levels, are no higher and even reduced when dissolved methane is present. In addition, trace element concentrations are not correlated with distance to gas wells. The reduction in trace element concentrations is attributed to anaerobic microbial degradation of methane, is associated with a higher pH (>8.5), and, likely, with precipitation of carbonates and pyrite and formation of clays. Trace and other elements are likely incorporated within the precipitating mineral crystalline network or sorbed. High pH values are found throughout these high‐methane clusters (e.g., Parker‐Hood cluster), even in subregions where methane is not present, which is consistent with a pervasive natural origin of dissolved methane rather than a limited gas well source.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号