首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
大气科学   1篇
地球物理   5篇
地质学   10篇
海洋学   4篇
天文学   5篇
  2018年   3篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1995年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
This paper deals with dynamics of impact ejecta from Phobos and Deimos initially on near-circular equatorial orbits around Mars. For particles emitted in a wide size regime of 1 micron and greater, and taking into account the typical particle lifetimes to be less than 100 years, the motion is governed by two perturbing forces: solar radiation pressure and influence of Mars' oblateness. The equations of motion of particles in Lagrangian non-singular elements are deduced and solved, both analytically and numerically, for different-sized ejecta. We state that the coupled effect of both forces above is essential so that on no account can the oblateness of Mars are be neglected. The dynamics of grains prove to be quite different for the ejecta of Phobos and Deimos. For Deimos, the qualitative results are relatively simple and imply oscillations of eccentricity and long-term variations of orbital inclination, with amplitudes and periods both depending on grain size. For Phobos, the dynamics are shown to be much more complicated, and we discuss it in detail. We have found an intriguous peculiar behavior of debris near 300 µm in size. Another finding is that almost all the Phobos ejecta with radii less than 30 µm (against the values of 5 to 20 µm adopted earlier by many authors) should be rapidly lost by collisions with martian surface. The results of the paper may be the base for constructing an improved model of dust belts that presumably exist around Mars.  相似文献   
2.
Mineralogy and Petrology - The new mineral ziminaite, ideally Fe3+VO4, was found in fumarole sublimates at the Bezymyannyi volcano, Kamchatka, Russia. Ziminaite occurs as lamellar, tabular or...  相似文献   
3.
Field observations of tidally driven stratified flow in the sill area of Knight Inlet (British Columbia) revealed a very complicated structure, which includes solitary waves, upstream bifurcation, hydraulic jump and mixing processes. Recent observations suggest that the flow instabilities on the plunging pycnocline at the lee side of the sill may contribute to solitary wave generation through a subharmonic interaction. The present study reports on a series of numerical experiments of stratified tidal flow in Knight Inlet performed with the help of a fine resolution fully non-linear non-hydrostatic numerical model. The model reproduces all important stages of the baroclinic tidal dynamics observed in Knight Inlet. Results demonstrate that solitary waves are generated apart from the area of hydrodynamic instability. Accelerating tidal flux forms a baroclinic hydraulic jump just above the top of the sill, whereas the bifurcations and zones of shear instabilities are formed downstream of the sill. The first baroclinic mode having the largest velocity escapes from the generation area and propagates upstream, disintegrating further into a packet of solitary waves reviling the classical “non-subharmonic” mechanism of generation. The remaining part of the disturbance (slow baroclinic modes) is arrested by tidal flow and carried away to the lee side of the obstacle, where shear instability, billows and mixing processes are developed. Some sensitivity runs were performed for different value of tidal velocity.  相似文献   
4.
The composition and potential diamond productivity of C–O–H fluids that could exist in the reduced regions of the Earth’s upper mantle and in the mantles of Uranus and Neptune were studied in experiments at 6.3 GPa and 1400–1600 °C and durations of 15–48 h. Hydrogen fugacity in the fluid phase was controlled by the Mo–MoO2 or Fe–FeO buffers, using a specially modified double-capsule method. The oxygen fugacity in the samples was controlled by adding different amounts of water, stearic acid, anthracene, and docosane to a graphite charge. At high P–T conditions, the degree of decomposition of the heavy hydrocarbons added to the charge was 99.9%. The composition of the fluids coexisting with graphite/diamond in the buffered experiments varied from H2O  H2 > CH4 (at fO2 somewhat lower than the “water maximum”) to H2 > CH4 > (C2H4 + C2H6)>C3H8 (in C–H system). In the C–H system the maximum concentrations of major species in the synthesized fluid were: H2 = 79 mol.% and CH4 = 21 mol.%. The composition of the H2-rich fluids, which were synthesized at 6.3 GPa and 1400–1600 °C for the first time, differs considerably from that of the ultra-reduced CH4-rich fluids stable at 2.0–3.5 GPa and 1000–1300 °C. Thermodynamic calculations of the reduced C–O–H fluids at the P–T conditions of the experiments revealed CH4-rich compositions (CH4  H2 > (C2H4 + C2H6)>C3H8), which however drastically differed from the synthesized compositions. The rates of diamond nucleation and growth in the experiments depended on the fluid composition. Diamond crystallization had a maximum intensity in the pure aqueous fluids, while in the H2-rich fluids no diamond formation was observed. Only metastable graphite precipitated from the ultra-reduced fluids. The type of the initial hydrocarbon used for the fluid generation did not affect this process.  相似文献   
5.
Over the last decade several new models for the sporadic interplanetary meteoroid flux have been developed. These include the Divine-Staubach and the Dikarev model. They typically cover mass ranges from 10−18 g to 1 g and are applicable for model specific Sun distance ranges between 0.1 AU and 20 AU Near 1 AU averaged fluxes (over direction and velocities) for all these models are tuned to the well established interplanetary model by Grün et al. However, in many respects these models differ considerably. Examples are the velocity and directional distributions and the assumed meteoroid sources. In this paper flux predictions by the various models to Earth orbiting spacecraft are compared. Main differences are presented and analysed. The persisting differences even for near Earth space can be seen as surprising in view of the numerous ground based (optical and radar) and in situ (captured Inter Stellar Dust Particles, in situ detectors and analysis of retrieved hardware) measurements and simulations.  相似文献   
6.
We present the latest enhancement of the nonlinear monotone finite volume method for the near-well regions. The original nonlinear method is applicable for diffusion, advection-diffusion, and multiphase flow model equations with full anisotropic discontinuous permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional two-point flux approximation (TPFA) on cubic meshes but has much better accuracy for the general case of non-orthogonal grids and anisotropic media. The latest modification of the nonlinear method takes into account the nonlinear (e.g., logarithmic) singularity of the pressure in the near-well region and introduces a correction to improve accuracy of the pressure and the flux calculation. In this paper, we consider a linear version of the nonlinear method waiving its monotonicity for sake of better accuracy. The new method is generalized for anisotropic media, polyhedral grids and nontrivial cases such as slanted, partially perforated wells or wells shifted from the cell center. Numerical experiments show noticeable reduction of numerical errors compared to the original monotone nonlinear FV scheme with the conventional Peaceman well model or with the given analytical well rate.  相似文献   
7.
The deformation history of the Late Palaeozoic Ural–Tian Shan junction is discussed for the example of the Karatau ridge in southern Kazakhstan. Three deformation events are recognized. The Late Carboniferous D1 event is characterized by Laramide-style thrust-and-fold structures on the southern margin of Kazakhstan with shortening in a NE–SW direction. The Latest Permian and Triassic D2 event is controlled by compression in an east–west direction, which reflects collisional deformation in the Urals. The main structures are submeridional folds and north–west-striking sinistral strike–slip faults. The Triassic D3 event with shortening in a north–south direction reflects collision of the Turan microcontinent against the southern margin of Kazakhstan. The main structures are north–west-striking dextral strike–slip faults. Our new data provides important clues for the reconstruction of pre-Cretaceous structures between the Urals and the Tian Shan.  相似文献   
8.
One of the major pathways in the northern part of the Meridional Overturning Circulation (MOC) is that of the deep water in the Nordic Seas that runs through the Faroe-Shetland Channel (FSC) and Faroe Bank Channel (FBC), as well as crossing the Wyville Thomson Ridge (WTR), on its way into the Atlantic Ocean. The WTR overflow cascades down the southern side of the ridge via the narrow Ellett Gully to the Cirolana Deep (CD) which, at 1700 m, is the deepest hole in the extreme north of the Rockall Trough. The overflow accounts for nearly 1/10th of the total Faroe-Shetland Channel Bottom Water (FSCBW) discharged through the Faroese channels and is an important intermediate water mass in the Rockall Trough. Over a period of only seven days in April 2003 bottom water temperatures cooled dramatically, from 4.46 to 3.03 °C in the CD and from 3.93 to 2.54 °C in the Ymir Trough (YT). A numerical general circulation model (MITgcm) has been applied in order to reproduce the details of this dense water overflow event. Model results were consistent with the observed cooling and total water transport. It was found that the descending gravity current forms a pair of mesoscale eddies with cyclonic and anticyclonic vorticity at the exit to the CD. Analysis of mixing processes were obtained when a passive tracer was included in the model. It was found that downstream flow is characterized by an explosive detrainment regime in the CD. The model sensitivity runs revealed that the final depth to which the overflow descends depends on the initial upstream velocity of the overflow, as well as the buoyancy difference. It is argued that models of overflows need to have realistic representations of the density structure of the overflow, and sufficiently fine vertical resolution, for the subsequent fate of the overflow to be accurately represented.  相似文献   
9.
10.
The orbital distributions of dust particles in interplanetary space are revised in the ESA meteoroid model to incorporate more observational data and to comply with the constraints due to the long-term particle dynamics under the planetary gravity and Poynting–Robertson effect. Infrared observations of the zodiacal cloud by the COBE Earth-bound observatory, flux measurements by the dust detectors on board Galileo and Ulysses spacecraft, and the crater size distributions on lunar rock samples retrieved by the Apollo missions are fused into a single model. Within the model, the orbital distributions are expanded into a sum of contributions due to a number of known sources, including the asteroid belt with the emphasis on the prominent families Themis, Koronis, Eos and Veritas, as well as comets on Jupiter-encountering orbits. An attempt to incorporate the meteor orbit database acquired by the Advanced Meteor Orbit Radar at Christchurch is also discussed. Work was done during D. Galligan’s stay at the University of Canterbury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号