首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   4篇
大气科学   3篇
地球物理   7篇
地质学   27篇
海洋学   3篇
天文学   11篇
自然地理   3篇
  2023年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1958年   1篇
排序方式: 共有54条查询结果,搜索用时 656 毫秒
1.
Coal seams burning underneath the surface are recognized all over the world and have drawn increasing public attention in the past years. Frequently, such fires are analyzed by detecting anomalies like increased exhaust gas concentrations and soil temperatures at the surface. A proper analysis presumes the understanding of involved processes, which determine the spatial distribution and dynamic behavior of the anomalies.In this paper, we explain the relevance of mechanical and energy transport processes with respect to the occurrence of temperature anomalies at the surface. Two approaches are presented, aiming to obtain insight into the underground coal fire situation: In-situ temperature mapping and numerical simulation. In 2000 to 2005, annual temperature mapping in the Wuda (Inner Mongolia, PR China) coal fire area showed that most thermal anomalies on the surface are closely related to fractures, where hot exhaust gases from the coal fire are released. Those fractures develop due to rock mechanical failure after volume reduction in the seams. The measured signals at the surface are therefore strongly affected by mechanical processes.More insight into causes and effects of involved energy transport processes is obtained by numerical simulation of the dynamic behavior of coal fires. Simulations show the inter-relation between release and transport of thermal energy in and around underground coal fires. Our simulation results show a time delay between the coal fire propagation and the observed appearance of the surface temperature signal. Additionally, the overall energy flux away from the burning coal seam into the surrounding bedrock is about 30-times higher than the flux through the surface. This is of particular importance for an estimation of the energy released based on surface temperature measurements. Finally, the simulation results also prove that a fire propagation rate estimated from the interpretation of surface anomalies can differ from the actual rate in the seam.  相似文献   
2.
3.
Quartz-in-garnet inclusion barometry integrated with trace element thermometry and calculated phase relations is applied to mylonitized schists of the Pinkie unit cropping out on the island of Prins Karls Forland, western part of the Svalbard Archipelago. This approach combines conventional and novel techniques and allows deciphering of the pressure–temperature (P–T) evolution of mylonitic rocks, for which the P–T conditions could not have been easily deciphered using traditional methods. The results obtained suggest that rocks of the Pinkie unit were metamorphosed under amphibolite facies conditions at 8–10 kbar and 560–630°C and mylonitized at ~500 to 550°C and 9–11 kbar. The P–T results are coupled with in-situ Th–U-total Pb monazite dating, which records amphibolite facies metamorphism at c. 359–355 Ma. This is the very first evidence of late Devonian–early Carboniferous metamorphism in Svalbard and it implies that the Ellesmerian Orogeny on Svalbard was associated with metamorphism up to amphibolite facies conditions. Thus, it can be concluded that the Ellesmerian collision between the Franklinian margin of Laurentia and Pearya and Svalbard caused not only commonly accepted brittle deformation and weak greenschist facies metamorphism, but also a burial and deformation of rock complexes at much greater depths at elevated temperatures.  相似文献   
4.
Enantiomeric measurements for aspartic acid, glutamic acid, and alanine in twenty-one different fossil bone samples have been carried out by three different laboratories using different analytical methods. These inter-laboratory comparisons demonstrate that D/L aspartic acid measurements are highly reproducible, whereas the enantiomeric measurements for the other amino acids show a wide variation between the three laboratories. At present, aspartic acid measurements are the most suitable for racemization dating of bone because of their superior analytical precision.  相似文献   
5.
Abstract– 40Ar/39Ar dating of potassium feldspar (primary spherulitic‐blocky and secondary idiomorphic K‐feldspar) separated from impact‐metamorphosed gneiss found near Videix in the western central part of the Rochechouart impact structure (NW Massif Central, France) yielded a Rhaetian combined age of 201 ± 2 Ma (2σ), indistinguishable within uncertainty from the age of the Triassic/Jurassic boundary. Ballen quartz intergrown with the primary K‐feldspar indicates post‐shock temperatures exceeding approximately 1000 °C that affected the precursor gneiss. Geochemically, both feldspar types represent essentially pure potassium end‐members. Apart from the approximately 15 km diameter impact deposit area, the youngest crystallization age known for basement rocks in this part of the Massif Central is approximately 300 Ma. No endogenic magmatic‐thermal events are known to have occurred later in this region. The K‐feldspar recrystallized from local feldspar melts and superimposed post‐shock hydrothermal crystallization, probably within some thousands of years after the impact. It is, therefore, suggested that the 40Ar/39Ar age for the Videix gneiss (as a potassic “impact metasomatite”) dates the Rochechouart impact, in consistence with evidence for K‐metasomatism in the Rochechouart impactites. The new age value is distinctly younger than the previously obtained Karnian–Norian age for Rochechouart and, thus, contradicts the Late Triassic multiple impact theory postulated some years ago. In agreement with the paleogeographic conditions in the western Tethys domain around the Triassic/Jurassic boundary, the near‐coastal to shallow marine Rochechouart impact is compatible with the formation of seismites and tsunami deposits in the latest Triassic of the British Isles and possible related deposits in other parts of Europe.  相似文献   
6.
Abstract– 40Ar/39Ar dating of recrystallized K‐feldspar melt particles separated from partially molten biotite granite in impact melt rocks from the approximately 24 km Nördlinger Ries crater (southern Germany) yielded a plateau age of 14.37 ± 0.30 (0.32) Ma (2σ). This new age for the Nördlinger Ries is the first age obtained from (1) monomineralic melt (2) separated from an impact‐metamorphosed target rock clast within (3) Ries melt rocks and therewith extends the extensive isotopic age data set for this long time studied impact structure. The new age goes very well with the 40Ar/39Ar step‐heating and laser probe dating results achieved from mixed‐glass samples (suevite glass and tektites) and is slightly younger than the previously obtained fission track and K/Ar and ages of about 15 Ma, as well as the K/Ar and 40Ar/39Ar age data obtained in the early 1990s. Taking all the 40Ar/39Ar age data obtained from Ries impact melt lithologies into account (data from the literature and this study), we suggest an age of 14.59 ± 0.20 Ma (2σ) as best value for the Ries impact event.  相似文献   
7.
Seven impact melts from various places in the Nördlinger Ries were dated by 40Ar‐39Ar step‐heating. The aim of these measurements was to increase the age data base for Ries impact glasses directly from the Ries crater, because there is only one Ar‐Ar step‐heating spectrum available in the literature. Almost all samples display saddle‐shaped age spectra, indicating the presence of excess argon in most Ries glass samples, most probably inherited argon from incompletely degassed melt and possibly also excess argon incorporated during cooling from adjacent phases. In contrast, moldavites usually contain no inherited argon, probably due to their different formation process implying solidification during ballistic transport. The plateau age of the only flat spectrum is 14.60 ± 0.16 (0.20) Ma (2σ), while the total age of this sample is 14.86 ± 0.20 (0.22) Ma (isochron age: 14.72 ± 0.18 [0.22] Ma [2σ]), proofing the chronological relationship of the Ries impact and moldavites. The total ages of the other samples range between 15.77 ± 0.52 and 20.4 ± 1.0 Ma (2σ), implying approximately 2–40% excess 40Ar (compared to the nominal age of the Ries crater) in respective samples. Thus, the age of 14.60 ± 0.16 (0.20) (2σ) (14.75 ± 0.16 [0.20 Ma] [2σ], calculated using the most recent suggestions for the K decay constants) can be considered as reliable and is within uncertainties indistinguishable from the most recent compilation for the age of the moldavite tektites.  相似文献   
8.
Abstract— 40Ar/39Ar ages of four tektites (moldavites) from southern Bohemia (near ?eské Budějovice, Czech Republic) and a tektite from Lusatia (near Dresden, Germany) have been determined by 11 step‐degassing experiments. The purpose of the study was to enlarge the 40Ar/39Ar data base of moldavites and to check the age relations of the Bohemian and Lusatian samples. The mean plateau‐age of the Bohemian samples, which range from 14.42 to 14.70 Ma, is 14.50 ± 0.16 (0.42) (2σ) Ma (errors in parentheses include age error and uncertainty of standard monitor age). The plateau age of the Lusatian sample of 14.38 ± 0.26 (0.44) (2σ) Ma confirms the previously published 40Ar/39Ar age of 14.52 ± 0.08 (0.40) (2σ) Ma, and demonstrates that the fall of Lusatian and Bohemian tektites were contemporaneous. Because of their geochemistry and their ages there is no doubt that the Lusatian tektites are moldavites. Accepting that moldavites are ejecta from the Nördlinger Ries impact, the new ages also date the impact event. This age is slightly younger (about 0.2–0.3 Ma) than the age suggested by earlier K‐Ar determinations.  相似文献   
9.
In the Pulur complex (Sakarya Zone, Eastern Pontides, Turkey) a low-grade tectonometamorphic unit (Doankavak) is exposed in three tectonic windows beneath a complex medium-pressure high-temperature metamorphic unit of late Carboniferous age. The thrust plane between both units is transgressively covered by Liassic conglomerates. The Doankavak unit comprises a sequence of metabasites with MORB-type chemical compositions and phyllites, with subordinate calcareous phyllites, marbles, quarzofeldspathic schists and metacherts. This sequence is interpreted as a former accretionary complex related to the consumption of the Palaeotethys. Mineral parageneses in the metabasites allow for the distinction of two domains with slightly different peak metamorphic conditions, i.e. 375–425 °C/0.5–0.8 GPa (greenschist facies) and 400–470 °C/0.6–1.1 GPa (albite-epidote amphibolite facies). The age of metamorphism is constrained at ~ 260 Ma (early Late Permian) by two Rb-Sr mineral-whole rock ages (hornblende, phengite) and one 40Ar/39Ar single step total fusion age (phengite). In conjunction with previous data on other accretionary complexes in the Sakarya zone in Northern Turkey, the data presented in this study suggest a continuous subduction of the Palaeotethys at least from Early/Late Permian to Late Triassic and a discontinuous preservation of accretion complexes in both space and time.  相似文献   
10.
Within the Tethyan realm, data for the subduction history of the Permo–Triassic Tethys in the form of accretionary complexes are scarce, coming mainly from northwest Turkey and Tibet. Herein we present field geological, petrological and geochronological data on a Triassic accretionary complex, the A?vanis metamorphic rocks, from northeast Turkey. The A?vanis metamorphic rocks form a SSE–NNW trending lozenge‐shaped horst, ~20 km long and ~6 km across, bounded by the strands of the active North Anatolian Fault close to the collision zone between the Eastern Pontides and the Menderes–Taurus Block. The rocks consist mainly of greenschist‐ to epidote‐amphibolite‐facies metabasite, phyllite, marble and minor metachert and serpentinite, interpreted as a metamorphic accretionary complex based on the oceanic rock types and ocean island basaltic, mid‐ocean ridge basaltic and island‐arc tholeiitic affinities of the metabasites. This rock assemblage was intruded by stocks and dikes of Early Eocene quartz diorite, leucogranodiorite and dacite porphyry. Metamorphic conditions are estimated to be 470–540°C and ~0.60–0.90 GPa. Stepwise 40Ar/39Ar dating of phengite–muscovite separates sampled outside the contact metamorphic aureoles yielded steadily increasing age spectra with the highest incremental stage corresponding to age values ranging from ~180 to 209 Ma, suggesting that the metamorphism occurred at ≥ 209 Ma. Thus, the A?vanis metamorphic rocks represent the vestiges of the Late Triassic or slightly older subduction in northeast Turkey. Estimated P–T conditions indicate higher temperatures than those predicted by steady state thermal models for average subduction zones, and can best be accounted for by a hot subduction zone, similar to the present‐day Cascadia. Contact metamorphic mineral assemblages around an Early Eocene quartz diorite stock, on the other hand, suggest that the present‐day erosion level was at depths of ~14 km during the Early Eocene, indicative of reburial of the metamorphic rocks. Partial disturbance of white‐mica Ar–Ar age spectra was probably caused by the reburial coupled with heat input by igneous activity, which is probably related to thrusting due to the continental collision between Eastern Pontides and the Menderes–Taurus Block.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号