首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   24篇
地质学   11篇
海洋学   2篇
天文学   1篇
自然地理   13篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2006年   1篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
  1970年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
We examined the hypothesis that minima in local recurrence time, TL, or equivalently maxima in local probability, PL, may map asperities in the Kanto and Tokai areas of Japan, where the earthquake catalog of the National Research Institute for Earth Science and Disaster Prevention (NIED) is complete at the M=1.5 (M1.5) level. We mapped TL (PL) based on the a- and b-values of the nearest earthquakes within 20 km of every node of a grid spaced 0.01° for M7 target events. Only earthquakes within the top 33 km were used. The b-values increase strongly with depth, in several areas. Therefore, some of the TL (PL) anomalies are not revealed if data from the entire crustal seismogenic zone are mixed. Thus, we mapped TL (PL) separately for the top 15 km and the rest of the depth range, as well as for the entire seismogenic crust. The resulting TL- and PL-maps show that approximately 12% of the total area shows anomalously short recurrence times. Out of six shallow target events with M≥6.5 and which occurred since 1890, five are located within the anomalous areas with TL <450 years. We interpret this to mean that areas with anomalously short TL map asperities, which are more likely than other areas to generate future target events. The probability that this result is due to chance is vanishingly small. The great Kanto rupture of 1923 appears to have initiated in the most significant asperity we mapped in the study area. One anomaly is located in the northeastern part of the area of the proposed future rupture of the Tokai earthquake, and another one at its southwestern corner. The absolute values of TL calculated are uncertain because they depend on the size of the volume used for the calculation.  相似文献   
2.
The arrival time difference for the AB branch of PKP from deep Tonga earthquakes is constant over years with a standard deviation of ±0.05 seconds at seismographs located 10 to 50 km from each other. If published travel time curves are used to calculate the relative residuals of PKP the standard deviation from the constant mean is improved by approximately 0.01 seconds for AB branch data. For the BC branch, standard deviations of relative travel times of ±0.06 seconds are reduced to less than ±0.05 seconds by calculating relative residuals. We conclude that changes of crustal transit time forP-waves could be resolved, based on careful PKP arrival time measurement at two or more neighboring stations if the changes exceed 0.05 sec and last for more than one year. The conditions for achieving this result are that PKP from Tonga earthquakes is clearly recorded, and that time-keeping is accurate. The data on which these conclusions are based were obtained from the Graefenberg seismograph array, which is located in West Gemany and consists of 13 stations separated by distances of 10 km to 100 km. We propose that relative arrival times of PKP from Tonga could be used in the Mediterranean - Middle East area to search for precursory travel time changes before large earthquakes.  相似文献   
3.
Seismic quiescence before the M 7, 1988, Spitak earthquake, Armenia   总被引:7,自引:0,他引:7  
A detailed analysis of the 35  yr of seismicity between 1962 and 1997 using a gridding technique shows that the M 7, Spitak earthquake of 1988 December 7 was preceded by a quiescence anomaly that started at approximately 1984±0.5, and lasted about 5±0.5  yr, up to the main shock. This quiescence anomaly had a radius of about 20±3  km, estimated from circular areas with 75 per cent rate decrease, centred at the point of maximum significance of the anomaly. The quiescence was clearly present in the aftershock volume during the 5  yr before the 1988 main shock, but its statistically strongest expression was located 30  km NW of the epicentre. This anomaly fulfills the association rules between precursory quiescence anomalies and main shocks, even for a tight definition, and is therefore proposed as a case of precursory quiescence. The largest value of the standard deviate Z , found by random selection of samples by gridding, was Z =14 for a time window of T w=3  yr, using a sample size of N =300 events. This makes this anomaly the strongest observed so far, and it is the first documented in an environment of continental collision. There are no false alarms exceeding in significance the precursor. The Armenian earthquake catalogue used for this study had 4600 earthquakes with M ≥ M min=2.2 in the area bounded by 39.5° to 42°N/42.5° to 47°E. From the point of view of homogeneous reporting this is the best catalogue we have analysed so far. The limits of the data used and the density of the grid are dictated by the data, and have no influence on the results. The choice of free parameters does not influence the results significantly within the following limits: 100≤ N ≤500, 2≤ T w≤7, 2.2≤ M min≤2.8.  相似文献   
4.
Editor's note     
  相似文献   
5.
This research reconstructed the Late Quaternary salinity history of the Pearl River estuary, China, from diatom records of four sedimentary cores. The reconstruction was produced through the application of a diatom–salinity transfer function developed based on 77 modern surface sediment samples collected across the estuary from shallow marine environment to deltaic distributaries. The statistical analysis indicates that the majority of sediment samples from the cores has good modern analogues, thus the reconstructions are reliable. The reconstructed salinity history shows the older estuarine sequence formed during the last interglacial was deposited under similar salinity conditions to the younger estuarine sequence, which was formed during the present interglacial. Further analysis into the younger estuarine sequence reveals the interplays between sea level, monsoon‐driven freshwater discharge, and deltaic shoreline movement, key factors that have influenced water salinity in the estuary. In particular, a core from the delta plain shows the effects of sea‐level change and deltaic progradation, while cores from the mouth region of the estuary reveal changes of monsoon‐driven freshwater discharge. This study demonstrates the advantages of quantitative salinity reconstructions to improve the quality of reconstruction and allow direct comparison with other quantitative records and the instrumentally observed values of salinity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
6.
7.
Mean annual sea level (MASL) data for 25 Greek stations were analyzed for the time period 1969–1982. The data from 4 of these were unacceptably poor, and the record of 3 stations showed unexplained step functions that were interpreted as errors. Relative MASL between stations showed crustal stability at 10 of the 18 useful stations. The standard deviation from the long-term average of these stations was ±1.8 cm. We conclude that if station records are carefully kept in this area crustal movements in excess of 5 cm can be detected by relative MASL. A comparison of MASL data with gravity changes measured in the Peloponnese and Central Greece suggests that vertical movements occurred along a gradient equal to or larger than the free air gradient. We conclude that the gravity network should be reoccupied frequently such that the non-tectonic effects to be determined from the probable observed gravity changes, and the tectonic vertical movements may be better understood. A co-seismic subsidence of about 5 cm is inferred to have taken place near Korinth during the 1981,M s =6.8, earthquake, which occurred 20 km N of this tide gauge (Posidonia). During 2.5 years before the 1968 Thessaloniki,M s =6.6, earthquake, sea level was lower than average suggesting possible crustal elevation of 3.6 cm at about 28 km epicentral distance. Because of the small amplitude of this change we are not certain that it represents crustal uplift. At station Myrina (on Limnos) a strong and consistent trend of subsidence accumulated a 15 cm change between 1975 and 1980. Chios showed a trend of emergence (total accumulation about +5 cm), while Volos showed a trend of subsidence (approximately ?5 cm total). Kefalinia appears to have subsided about 10 cm during the data period. The six stations along the Hellenic arc plate boundary showed nearly constant MASL, suggesting that crustal stability existed there during the last 14 years. We conclude that MASL data in Greece can be useful for understanding tectonic processes, especially if these data are gathered carefully and at numerous locations, and are cross-correlated to high precision repeat gravity measurements, and geodetic releveling. Also, MASL data on active volcanic islands have excellent potential for detecting uplift before future eruptions.  相似文献   
8.
Wyss  Max  Al-Homoud  Azm S. 《Natural Hazards》2004,32(3):375-393
We estimate the losses due to 10 scenario earthquakes in 150 settlements of the United Arab Emirates (UAE). For southern Iran, we use four source zones and the maximum magnitudes in them as determined by GSHAP (7.2 M 8.1). For six local scenario earthquakes, we use the range 5.5 M 6.5, place the sources mainly on mapped faults and vary the distance to major cities from 10 to 60 km. In the test case of the Masafi earthquake (M5, 11 March 2002), the method and data bank we use yield the correct results, suggesting that our approach to the problem is valid for the UAE. The sources in Iran are expected to cause only minor damage, except for an M8.1 earthquake in the Makran region. For such an event we expect some deaths, several hundred injured and a loss of 3–6% of the value to the building stock in the northeastern UAE, including Oman. The losses for local scenarios with epicenters in the unpopulated areas of the UAE and for scenarios with M < 5.8 are estimated to be minor. Because the two major mapped faults run through several of the large cities, scenarios with short epicentral distances from cities have to be considered. Scenarios with M6 near cities lead to estimates of about 1000 ± 500 deaths, and several thousand injured. Most buildings are expected to be damaged to a moderate degree and the loss to buildings is estimated around 1/4of their value. If the magnitude should reach 6.5, the losses to humans and to building value could be staggering. These estimates are approximate because: (1) there exists no local seismograph network that could map active faults by locating microseismicity; (2) there exist no historically old buildings that could serve as tests for effects due to strong ground motion in the past; (3) there exist no microzonation of the subsurface properties in this region of unconsolidated building ground; (4) there exist no detailed inventory of building fragility. Nevertheless, our conclusion that there exists a substantial seismic risk in the UAE is reliable, because our method yields accurate results in the cases of earthquakes with known losses during the last several decades in the Middle East.  相似文献   
9.
We have proposed that points of future initiation of rupture may be mapped, based on minima in local recurrence times, which are equivalent to local maxima in the probability for main shocks to occur. These minima are often controlled by anomalously low b-values (logN = a − bM). Of the Kanto-Tokai area, approximately 12% showed anomalously short recurrence times and was proposed as asperities, based on seismicity up to 1999. During the period 1999–2003.5, about 75% of the earthquakes with M ≥ 3.5 fell into the asperities, earlier defined (for example 19 out of 23 M ≥ 3.8 events). The probability for this to occur by chance is approximately 2 10− 14. This supports our idea that the most likely volumes to produce main shocks may be mapped by minima in local recurrence times.  相似文献   
10.
The Stone Canyon earthquake sequence started during August 1982 and lasted for about four months. It contained four mainshocks withM L 4, each with an aftershock zone about 4 km long. These mainshocks, progressing from southeast to northwest, ruptured a segment of the fault approximately 20 km long leaving two gaps, which were later filled by theM L =4.6 mainshocks of January 14, and May 31, 1986. The equivalent magnitude of the sequence isM L =5.0.Precursory seismic quiescence could be identified in: (1) the northernmost 10 km of the aftershock zone which contained three of the mainshocks; and (2) the southern gap in the aftershock zone. The fault segment containing the first mainshock and its aftershocks did not show quiescence. This pattern of precursory quiescence is very similar to two cases in Hawaii where the rupture initiation points of the mainshocks (M S =7.2 and 6.6, respectively) were located in volumes of constant seismicity rate, surrounded by volumes with pronounced precursory quiescence.The precursory quiescence before the August 1982 Stone Canyon earthquakes lasted for 76 weeks, amounted to a reduction in rate of about 60%, and could be recognized without any false alarms. That is, the anomaly was unique within the 60 km study segment of the fault and in the years 1975 through August 1982. Eighteen foreshocks occurred between July 27 and August 7, 1982. We conclude that the August 1982 mainshocks could have been predicted, based on seismic quiescence and foreshocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号