首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   4篇
地球物理   4篇
地质学   7篇
综合类   2篇
自然地理   2篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2010年   2篇
  2003年   1篇
  1999年   3篇
  1995年   1篇
  1993年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
郑兴年  王乃斌 《地理学报》1993,48(2):161-170
本文利用遥感技术通过典型区的分析,对黄土高原土地退化现状及其成因过程进行了深入研究。结果表明,黄土高原地区由于特殊的自然条件,加以长期人类活动影响,土地退化十分严重,并处于不断发展之中,主要表现为水土流失和土地沙化等。  相似文献   
2.
IINTRODUCTIONTheNianchuRiverCatchmentisoneofthemaingrainproducingareasofTibet.TheengineeringregulationoftheriverisanimportantcomponentofstatekeyprojectofChina,"OneRiverandTwoTributariesProject"."OneRiver"herestandsfortheYarlungZhangboRiverandthe"TwoTributaries"aretheNianchuRiverandtheLasaRiverinCentral-SouthernTibet.InordertoimprovethewaterresourcesandtopreventfloodinginTibet,aseriesofhydropowerstations,irrigationdiversionprojects,floodcontrollevees,andreforestationprogramshaveb…  相似文献   
3.
IINTRODUCTIONTheannualaverageruff-offinthewatershedoftheGongzuiReservoiris50billioncubicmeterswithanaveragesedimentloadof34.7milliontonsperyear.Finesedimentwithd,,=0'055mmcompose97%oftheiota]sedimentload.Theannualcoarsegravelpericleswithd,,=58.5mmisaboutonemilliontons.TheendofbackWateris38kmawayfromthedam.Thereservoirwasoriginallydesignedtoatotalstoragecapacityof374millioncubicmeters,inwhich102millioncubicmetersisregulationstoragecapacityand243millioncubicmetersis'dead'storagecapacityfo…  相似文献   
4.
探明强降雨下泥沙输移突增的关键特征因子及其临界条件对预防泥沙灾害及减少水土流失将起到至关重要的作用。选取典型的四川紫色土试验区鹤鸣观小流域为研究对象,采用数据分类统计对比分析方法,对试验站近10年降雨径流输沙资料进行分析,研究强降雨情况下次降雨量、降雨强度和降雨历时等对泥沙输移突增的影响,找出导致泥沙输移突增的关键特征因子及其临界条件。研究结果表明:四川紫色土区强降雨情况下泥沙输移突增的关键特征因子为次降雨量、降雨强度以及最大径流模数;同时各关键因子的临界值分别为降雨强度5.3 mm/h,次降雨量130 mm,以耕作方式为主的坡地最大径流模数临界值为6 000 dm3/(km2·s),以种植林草为主的坡地最大径流模数临界值为3 000 dm3/(km2·s)。  相似文献   
5.
Peng  Qinge  Liu  Xingnian  Huang  Er  Yang  Kejun 《Natural Hazards》2019,98(2):751-763

Due to the steep slope of mountainous watersheds and large changes in vegetation coverage degree, flood response processes after rainstorms are complicated. The flow concentration time of the slope is a key parameter for the simulation of flood processes. The most widely used flow concentration time formula currently in the distributed hydrological model is T?=?L0.6n0.6i?0.4S?0.3, which is derived from the kinematic wave theory (Melesse and Graham in J Am Water Resour As 40(4):863–879, 2004; Lee in Hydrol Sci 53(2):323–337, 2008). The flow confluence time T is characterized by the constant exponent of the slope length L, roughness n, effective rainfall intensity i and slope S, and the influence of vegetation on the flow concentration time is implied by the roughness. In this study, a series of heavy rainfall slope surface confluence tests under different slopes and vegetation coverage were carried out, a vegetation coverage factor, C, which was introduced, a statistical analysis method was used, and the vegetation coverage index was fitted. The results showed that the types of vegetation have a certain influence on the flow concentration time of slope, and the flow confluence time under turf vegetation was larger than the flow confluence time under shrubs vegetation; especially in the slope of the larger slope, the relative impact is more significant; at the same time, the influence of vegetation coverage on the flow concentration time of slope was more significant; no matter the condition of turf or shrub, the slope confluence time increased obviously with the increase in vegetation coverage. The index of vegetation coverage factor C varied with the slope and rain intensity. In general, the index of vegetation coverage factor C increased with the decrease in slope and decreased with the increase in rain intensity. In regard to the turf vegetation coverage index, when the slope is 45° and 30°, the decreasing trend of the vegetation coverage index a0 is obvious with increasing rainfall intensity. When the slope is 15°, the vegetation coverage index a0 also decreases with increasing rainfall intensity. When the slope is 5°, the vegetation coverage index a0 basically has no change. In regard to the shrubs vegetation coverage index, when the slope is 45° and 30°, the decreasing trend of the vegetation coverage index a0 is obvious with increasing rainfall intensity. When the slope is 15°, the vegetation coverage index a0 also decreases with increasing rainfall intensity. When the slope is 5°, the vegetation coverage index a0 basically has no change.

  相似文献   
6.
Floods are one of the most common natural hazards occurring all around the world. However, the knowledge of the origins of a food and its possible magnitude in a given region remains unclear yet. This lack of understanding is particularly acute in mountainous regions with large degrees in Sichuan Province, China, where runoff is seldom measured. The nature of streamflow in a region is related to the time and spatial distribution of rainfall quantity and watershed geomorphology. The geomorphologic characteristics are the channel network and surrounding landscape which transform the rainfall input into an output hydrograph at the outlet of the watershed. With the given geomorphologic properties of the watershed, theoretically the hydrological response function can be determined hydraulically without using any recorded data of past rainfall or runoff events. In this study, a kinematic-wave-based geomorphologic instantaneous unit hydrograph (KW-GIUH) model was adopted and verified to estimate runoff in ungauged areas. Two mountain watersheds, the Yingjing River watershed and Tianquan River watershed in Sichuan were selected as study sites. The geomorphologic factors of the two watersheds were obtained by using a digital elevation model (DEM) based on the topographic database obtained from the Shuttle Radar Topography Mission of US’s NASA. The tests of the model on the two watersheds were performed both at gauged and ungauged sites. Comparison between the simulated and observed hydrographs for a number of rainstorms at the gauged sites indicated the potential of the KW-GIUH model as a useful tool for runoff analysis in these regions. Moreover, to simulate possible concentrated rainstorms that could result in serious flooding in these areas, synthetic rainfall hyetographs were adopted as input to the KW-GIUH model to obtain the flow hydrographs at two ungauged sites for different return period conditions. Hydroeconomic analysis can be performed in the future to select the optimum design return period for determining the flood control work.  相似文献   
7.
对于黄土高原粉尘物质的来源以及沙漠和河流对粉尘的贡献,仍未达成一致的认识。本研究以毛乌素东神木市石峁剖面为研究对象,利用碎屑锆石年龄谱,对末次冰消期以来的风成粉尘堆积和河流沉积物展开源区分析,并使用逆蒙特卡罗模型进行物源的定量计算。结果显示,粒径分布和阴极发光(CL)图像显示石峁黄土为典型风成沉积。其粗颗粒碎屑锆石(>40 μm)年龄峰值集中在190~300 Ma、300~600 Ma、1700~1900 Ma和2300~2600 Ma,年龄谱显示近源(局地基岩碎屑)、中源(黄河河沙)和远源(阿拉善地区沙漠)均有贡献; 定量计算表明,三者分别贡献71%、21%和8%的风成粗颗粒。中、近源中,黄河及其支流侵蚀基岩后搬运沉积的漫滩物质成为粉尘输移的中转站,为黄土的形成提供了主要的物源。光释光测年结果表明,石峁剖面河流沉积物及其上覆的黄土物质分别形成于倒数第2次冰消期和末次冰消期,两者之间的沉积间断可能指示了末次冰期至冰消期的侵蚀事件,导致了河滩物质暴露,从而形成了潜在的局地尘源。这些结果表明,包括黄河干支流在内的河流系统对黄土粉尘有重要的物源贡献。  相似文献   
8.
Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures, and that destruction can pose a serious threat. Consequently, this paper aims at exploring the mechanisms of scouring and armoring. Firstly, the incipient velocity for nonuniform sediment particles was studied, and a formula was derived based on the angle of repose of nonuniform sediment. The results showed that the mechanism of incipient motion for sand and fine gravel differed from that for coarse gravel and cobbles. Also, comparison between experimental and field data shows that the results from the proposed formula agree well with those observed for all conditions. Secondly, a birth-death, immigration-emigration Markov process was developed to describe the bed load transport rate associated with scouring and armoring. The comparison between experimental data and computed results shows that our model can predict the bed load transport rate, although there may be some limitations, the chief of which is that there are many variables in the model to be determined through experiment. This makes its application in river engineering inconvenient.  相似文献   
9.
对于黄土高原粉尘物质的来源以及沙漠和河流对粉尘的贡献,仍未达成一致的认识。本研究以毛乌素东神木市石峁剖面为研究对象,利用碎屑锆石年龄谱,对末次冰消期以来的风成粉尘堆积和河流沉积物展开源区分析,并使用逆蒙特卡罗模型进行物源的定量计算。结果显示,粒径分布和阴极发光(CL)图像显示石峁黄土为典型风成沉积。其粗颗粒碎屑锆石(>40 μm)年龄峰值集中在190~300 Ma、300~600 Ma、1700~1900 Ma和2300~2600 Ma,年龄谱显示近源(局地基岩碎屑)、中源(黄河河沙)和远源(阿拉善地区沙漠)均有贡献; 定量计算表明,三者分别贡献71%、21%和8%的风成粗颗粒。中、近源中,黄河及其支流侵蚀基岩后搬运沉积的漫滩物质成为粉尘输移的中转站,为黄土的形成提供了主要的物源。光释光测年结果表明,石峁剖面河流沉积物及其上覆的黄土物质分别形成于倒数第2次冰消期和末次冰消期,两者之间的沉积间断可能指示了末次冰期至冰消期的侵蚀事件,导致了河滩物质暴露,从而形成了潜在的局地尘源。这些结果表明,包括黄河干支流在内的河流系统对黄土粉尘有重要的物源贡献。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号