首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   3篇
地质学   3篇
海洋学   2篇
  2015年   1篇
  2004年   1篇
  1998年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The interannual variations of the monthly sea surface temperature (SST) in the North Pacific (including Equatorial East Pacific) during 1951-1980 are analysed by means of EOF method. The findings are:(1) In the cold and warm ocean current areas, such as the North Pacific Current, the California Current and the Equatorial East Pacific areas, the convergence speeds are the fastest, while in the Kuroshio and the western part of the North Equatorial Current areas they are fast only in winter.(2) The physical features of the first 3 eigenvectors are obvious. The first eigenvector shows that the SST values are high in the south and low in the north in the latitudinal distribution of the SST field. The warm current area, i.e. the northwestern part of the North Pacific is positive and the cold current area, i.e. the southeastern part of the North Pacific including the Eastern Equatorial Pacific is negative. The zero line of the 2nd eigenvector field runs from northeast to southwest, in the same direction as the  相似文献   
2.
Magmatic accretion is potentially an important mechanism inthe growth of the continental crust and the formation of granulites.In this study, the thermal evolution of a magmatic arc in responseto magmatic accretion is modeled using numerical solutions ofthe one-dimensional heat conduction equation. The initial andboundary conditions used in the model are constrained by geologicalobservations made in the Kohistan area, NW Himalayas. Takingconsideration of the preferred intrusion locations for basalticmagmas, we consider two plausible modes of magmatic accretion:the first involves the repeated intrusion of basalt at mid-crustaldepths (‘intraplate model’), and the second evaluatesthe simultaneous intrusion of basalt and picrite at mid-crustaldepths and the base of the crust respectively (‘double-platemodel’). The results of the double-plate model accountfor both the inferred metamorphic PT paths of the Kohistanmafic granulites and the continental geotherm determined frompeak PT conditions observed for granulite terranes. Thedouble-plate model may be applicable as a key growth processfor the production of thick mafic lower crust in magmatic arcs. KEY WORDS: thermal model; magmatic underplating; PT path; granulite; lower crust  相似文献   
3.
Defining the Jurassic-Cretaceous boundary is a controversy in stratigraphic study of the world. It has been widely accepted that this boundary can be defined at the bottom of Berriasian in Tethys, with the appearance of the ammonite Berriasella jacobi dating to ca. 145 Ma. However, it is difficult for the widespread terrestrial deposits in China to correlate with the international standard of marine facies. The Somanakamura Group in Japan is represented by a succession of marine-continental transitional strata. It provides a bridge of marine and nonmarine stratigraphic correlation. The ammonite and radiolarian fossils preserved in this group suggest an age from Bajocian to early Valanginian. The J-K boundary was defined in or atop the Tomizawa Formation of the group according to the ammonite data. The present authors study the fossil spores and pollen newly found from the Tomizawa and Koyamada formations. Three assemblages have been recognized. They are Assemblage 1 (Cyathidites-Classopollis) from the upper part of the Tomizawa Formation, Assemblage 2 (Cyathidites-Jiaohepollis) from the lower part of the Koyamada Formation, and Assemblage 3 (Cyathidites-Spheripollenites-Ephedripites) from the middle to upper part of the Koyamada Formation. With the reference of ammonite evidence, the J-K boundary can be defined between Assemblage 1 and Assemblage 2. This palynological J-K boundary can be correlated with that of terrestrial sequence in China. However, local biostratigraphy imply that the continental J-K boundary in China is of 135 or 137 Ma age. It has a considerable discrepancy from the marine standard. Biogeographically, the distribution pattern of spores and pollen in southern China is in accordance with that in the Somanakamura Group, which parallels the Tuchengzi Formation in northeastern China. By the palynological correlation between the Somanakamura Group and the strata in southern China, and then with the sequence in northeastern China, it is suggested that the continental J-K boundary is located in the Tuchengzi Formation.  相似文献   
4.
The lower-crustal rocks of the Kohistan complex (northern Pakistan) are mostly composed of metabasic rocks such as pyroxene granulites, garnet granulites and amphibolites. We have investigated P–T trajectories of the relic two-pyroxene granulites, which are the protolith of the amphibolites within the Kamila amphibolite belt. Aluminous pyroxene retains igneous textures such as exsolution lamellae developed in the core. The significant amount of Al in clinopyroxene is buffered by breakdown reactions of plagioclase accompanied by film-like quartz as a product at grain boundaries between plagioclase and clinopyroxene. Distinct Al zoning profiles are preserved in pyroxene with exsolution lamellae in the core and in plagioclase adjacent to clinopyroxene in pyroxene granulites. In the northern part of the Kamila amphibolite belt, Al in clinopyroxene increases towards the rim and abruptly decreases at the outer rim, and anorthite in plagioclase decreases towards the rim and abruptly increases near the grain boundary between plagioclase and clinopyroxene. In the southern part of the Kamila amphibolite belt, Al in clinopyroxene and anorthite in plagioclase simply increase towards the margins of the grains. The anorthite zoning in plagioclase is in agreement with the zoning profiles of Ca-Tschermaks and jadeite components inferred from variations of Al, Na, Ti and Fe3+ in clinopyroxene. Assuming that the growth surface between them was in equilibrium, geothermobarometry based on Al zoning in clinopyroxene coexisting with plagioclase indicates that metamorphic pressures significantly increased with increasing temperature under granulite facies metamorphism. The peak of granulite facies metamorphism occurred at conditions of about 800 °C and 800–1100 MPa. These prograde P–T paths represent a crustal thickening process of the Kohistan arc during the Early to Middle Cretaceous. The crustal thickening of the Kohistan arc was caused by accretion of basaltic magma at mid-crustal depths.  相似文献   
5.
The correlation coefficients between the typhoon frequencies for the seven regions in East Asia (i. e. Xisha, Guangzhou, Xiamen, Shanghai, Naha, Kagoshima and Nagoya) and the monthly-mean sea surface temperature (SST) from 2 years before to 1 year after are calculated, indicating that the most significant correlation appears in the period from the summer of 2 years before to the summer of 1 year before. During this period negative correlations are located in the northwestern part of the North Pacific while the positive ones located in the southeastern part. It is found that the positive correlations change into the negative ones in Equatorial East Pacific in the same year (simultaneous correlation). The high-level correlation region in 1 year after is found in the area of Alaska Current. It is also suggested that there are interannual variations of about 1,1.5 and 2 years for the changes of the correlation intensity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号