首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2011年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Using a state‐of‐the‐art 193 nm‐LA‐MC‐ICP‐MS system and with careful control of analytical procedures, the long term external reproducibility and accuracy of the ages Phanerozoic zircons measured over a period of months using calibrator bracketing for the 206Pb/238U and 207Pb/206Pb ages were ca. 1% (2 RSD) if a single reference zircon was used for the matrix‐matched calibration. When different reference zircons were used for the calibration, suspicious systematic shifts in the obtained ages were observed and thus a reduction in the overall accuracy of the dating method became obvious. Such shifts were within a few percent range of the U‐Pb and Pb/Pb ages and seemed to vary independently of zircon age and composition. A “test of accuracy” experiment was conducted reducing instrumental effects as far as possible by analysing five different reference zircons mounted on a single mount eight times during the same session. An identical protocol was used for all analyses, with unchanged instrument parameters and with ion beam intensities kept as identical as possible. For data reduction, every zircon served consecutively as the reference zircon for calibration, with the others in the batch treated as unknowns. The known reference age and the four calculated ages obtained using the four other RMs for calibration were then compared. Even using such a strict analytical protocol, shifts in 206Pb/238U, 207Pb/235U and 207Pb/206Pb ratios were still present. They varied non‐systematically and ranged from ?4.35% to 3.08% for the investigated age range (1065 Ma to 226 Ma). Assuming the absence of instrumental effects (i.e., memory, dead‐time correction, non‐linearity of ion counters and interdetector calibration, crystallographic orientation, ablation cell geometry and setup, gas flows), the observed shifts were attributed to matrix and/or ablation related effects. It is proposed that non‐spectral matrix effects in the Ar plasma torch resulted in non‐uniform signal enhancement (or depression?) leading to shifts both in elemental and Pb isotopic ratios. Additionally, the ablated particle size distribution could be an important factor controlling plasma conditions and thus mass bias and fractionation. Until such effects are well understood and controlled, it would seem that any LA‐ICP‐MS zircon U‐Pb and 207Pb/206Pb age determination cannot be meaningfully interpreted at below a ca. 3% to 4% (2 RSD) confidence level.  相似文献   
2.
A selective and sensitive method for the extraction and spectrophotometric determination of gold with N,N′‐6,7,9,10,17,18,20,21‐octahydrodibenzo[b,k][1,4,7,10,13,16] hexaoxacyclo‐octadecine‐2,13–diylbis(2‐chloroacetamide) (ODBOCA) is described. The ODBOCA–Au(III) complex was extracted from a slightly acidic aqueous solution (pH 5) into a chloroform layer and then the absorbance of the extract was measured using a UV–Vis spectrophotometer with 1.0 cm quartz cells at 540 nm. An enrichment factor of 200 was achieved. In the chloroform medium at 540 nm, the molar absorptivity and Sandell’s sensitivity were 4.12 × 103 l mol?1 cm?1 and 0.048 μg cm?2, respectively. Beer’s law was obeyed in the range of 0.5–15 μg ml?1 in the measured solution. The relative standard deviation for ten replicate samples at the 1.0 μg ml?1 level was 3.0%. The limit of detection, based on 3s, was 0.5 μg l?1 in the original sample. The effects of pH, ligand concentration and shaking time were studied. The ratio of the metal ion to ligand molecules in the complex was found to be 1:2 according to the Job Method. The effects of interference by a number of metal ions were investigated. The method was verified with certified reference materials and spiked tests, and quantitative recovery values were obtained. The method was fast, accurate, selective and precise, and was applied to the determination of gold in water and ore with good results.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号